
AFIT/GEO/ENG/93D-04
AD-A274 050

DTIC
DEC231993'

Handwritten Word Recognition Based on Fourier Coefficients

THESIS

Gary Shartle
Captain, USAF

AFIT/GEO/ENG/93D-04

Approved for public release; distribution unlimited

93 12 22 1-08S 93-30995

AFIT/GEO/ENG/93D-04

Handwritten Word Recognition Based on Fourier Coefficients

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology O rC

Air University

In Partial Fulfillment of the
Accesion For

Requirements for the Degree of NTIS CRA&I

Master of Science DTIC TAB
U: ainounced E5
J jstification..

By

Di t ib.tio I

Gary Shartle, B.S.E. Availability Codes

Captain, USAF D Avail and /or
SDist Special

December, 1993

Approved for public release; distribution unlimited

Acknowledgements

The results of this research are the culmination of many factors. First and foremost,

my lovely wife Deborah and my beautiful baby Erica Katherine allowed me to spend the

time required to complete the research. Their loving inspiration sustained my pursuit.

Secondly, Dr Rogers provided invaluable guidance and motivation. I cannot say enough

thanks. Thirdly, all the committee members, Capt Ruck, Dr. Kabrisky, and Major Mark

O'Hair, greatly assisted me thoughout the project, to whom I owe many thanks. And

finally, without the assistance of the many friends here at AFIT, Bob MacDonald, John

Keller, Neale Prescott, Kim McCrae, Martin Chin, Curtis Martin, Tom Burns, Ken Field-

ing, Dan Zarnbon, Dave Doak, Delores Bailey, and many others, this research would not

be possible.

Gary Shartle

Table of Contents

Page

Acknowledgements ii

List of Figures iv

List of Tables v

Abstract vi

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem Statement 1-1

1.3 Summary of Current Knowledge 1-2

1.4 Research Objectives 1-2

1.5 Approach and Methodology 1-2

1.5.1 Fourier Analysis 1-3

1.5.2 Handwritten Word Classification 1-3

1.6 Thesis Organization 1-3

1.7 Summary 1-3

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Background 2-1

2.3 Difficulty in Segmenting Characters of Words 2-2

2.4 Current Methods of Handwritten Word Recognition 2-2

2.5 Feature Extraction 2-5

2.6 Previous Success using Fourier Features 2-6

2.7 Classification Techniques 2-7

iii

Page

2.7.1 k-nearest neighbor 2-7

2.7.2 multi-layer perceptron 2-7

2.7.3 Fusion of Classifiers 2-8

2.8 Conclusion 2-8

III. Approach and Methodology 3-1

3.1 Introduction 3-1

3.2 Data Set Description 3-1

3.2.1 Handwritten Words 3-1

3.2.2 Examples of the Words 3-1

3.2.3 Searching the Database for Words 3-3

3.3 Preprocessing the Images 3-3

3.3.1 Binarization 3-3

3.3.2 Window the image 3-3

3.4 Feature Extraction 3-5

3.4.1 Fourier Feature Extraction 3-5

3.5 Energy Normalization 3-6

3.6 Calculating 2D Discrete Fourier Transform 3-6

3.6.1 Figure-of-Merit features 3-8

3.7 Feature Subset Evaluation 3-9

3.7.1 A 7x7 Spatial Filter 3-10

3.7.2 Figure-of-Merit 3-10

3.7.3 Karhunen-Loeve Transformation 3-10

3.7.4 Magnitude and Phase 3-11

3.7.5 Add-on Procedure 3-11

3.7.6 Miscellaneous Feature Subsets 3-12

3.8 Data Normalization 3-12

3.9 Classification 3-13

iv

Page

3.10 LNKnet Parameters 3-13

3.11 Conclusion 3-14

IV. Results 4-1

4.1 Results of a 2-class problem using figure-of-merit features . . 4-1

4.2 Results of 2-class Problem Using 49 Features From Lower Three

Harmonics 4-4

4.3 Results of 2-class Problem Using 49 FOM features 4-5

4.4 Results of Some Miscellaneous Feature Subsets 4-8

4.5 4-Class Results 4-8

4.6 Results of a 4-class Problem Using FOM features 4-8

4.7 Results of a 4 class Problem Using Features from a 7x 7 Low-

pass Spatial Frequency Filter 4-10

4.8 Results of a 4 class Problem Using Features from a 7 x 7 Low-

pass Spatial Frequency Filter in add-on testing 4-11

4.9 Results of a 4-class Problem Using Magnitude and Phase Fea-

tures 4-11

4.9.1 Results of a 4-class Problem Using Magnitude and

Phase 4-12

4.9.2 Results of 4-class Problem Using Phase Features Only 4-13

4.9.3 Results of 4-class Problem Using Magnitude Features

Only 4-15

4.10 Results of 4-class Problem Using Imaginary Components Only 4-17

4.11 Results of a 4-class Problem Using Combination of KLT Features 4-18

4.12 Images 4-20

4.13 Generalization of Recognition 4-24

4.14 Conclusion 4-24

V. Conclusions 5-1

V

Page

Appendix A. A LNKnet Helper A-1

Appendix B. Sourcecode B-1

B.i Scriptfiles B-1

B.2 C code B-9

Bibliography BIB-1

Vita VITA-1

vi

List of Figures

Figure Page

3.1. Examples of Handwritten Words 3-2

3.2. Original Image 3-3

3.3. Binarized Image 3-4

3.4. Cropped Image 3-4

3.5. Feature Numbers for 10 Harmonics of the 2-dimensional discrete Fourier

Transform 3-7

3.6. Image of 'Buffalo' Reconstructed From Three Harmonics 3-8

3.7. Image of 'Buffalo' Reconstructed From Ten Harmonics 3-8

4.1. Histogram of Feature 198 for 200 Samples, 100/class 4-2

4.2. Histogram of Feature 198 for 200 Samples, 100/class 4-3

4.3. Training and Testing Error vs Epochs of Training 4-4

4.4. MLP Test Error vs Number of Features in the Lower Three Harmonics 4-5

4.5. MLP Test Error vs Number of Top FOM Features 4-7

4.6. 1-nn test error vs number of top FOM features 4-7

4.7. MLP Test Error vs Number of Features From The Lower 3 Harmonics 4-12

4.8. Patterns plotted for 2 dimensions of the KL transform 4-20

4.9. Mis-classified Patterns 4-21

4.10. Correctly classified pattern in class 0 4-21

4.11. Correctly classified pattern in class 0, reconstructed using the lower three

harmonics 4-21

4.12. Mis-classified pattern in class 0 4-22

4.13. Incorrectly classified pattern in class 0, reconstructed using the lower

three harmonics 4-22

4.14. Correctly classified pattern in class 3 4-22

vii

Figure Page

4.15. Correctly classified pattern in class 3, reconstructed using the lower three

harmonics 4-23

4.16. Mis-classified pattern in class 3 4-23

4.17. Incorrectly classified pattern in class 3, reconstructed using the lower

three harmonics 4-23

viii

List of Tables

Table Page

4.1. Top 10 Most Separable Features, Their Corresponding FOM and Harmonic 4-2

4.2. Best Combinations of Top 10 FOM Features and the Resulting MLP Test

Error 4-4

4.3. Best Combinations of Top 10 FOM Features and the Resulting 1-nn Test

Error 4-5

4.4. Listing of the 49 Fourier Features Used 4-6

4.5. List of the 49 FOM features 4-6

4.6. MLP Test Results from Various Feature Combinations 4-8

4.7. Top 10 Most Separable Features, Their Corresponding FOM and Harmonic 4-9

4.8. Best Combinations of Top 10 FOM Features and the Resulting MLP Test

Error 4-9

4.9. Confusion matrix for Best Combination of 5 FOM features 4-9

4.10. MLP Test Results Using 49 Features From the 7x7 Low-pass Spatial

Filter 4-10

4.11. K-nn Test Results Using 49 Features From the 7x7 Low-pass Spatial

Filter 4-11

4.12. Confusion matrix for the 1-nn Using 49 Feature From the 7 x 7 Low-pass

Spatial Filter 4-11

4.13. Best combinations of 49 features from the 7x7 spatial frequency filter

and the resulting MLP test error 4-12

4.14. MLP test results using 49 features from the magnitude and phase of the

7x7 low-pass spatial filter 4-13

4.15. Confusion matrix for magnitude and phase using 100 hidden nodes in the

multilayer perceptron 4-13

4.16. K-nn test results using magnitude and phase features from the coefficients

resulting from a 7 x 7 low-pass spatial frequency filter 4-13

4.17. Confusion matrix for magnitude and phase using a 1-nn classifier . . . 4-14

ix

Table Page

4.18. MLP Test Results Using 24 Features From the Phase of the 7x7 Low-pass

Spatial Filter 4-14

4.19. Confusion matrix for mlp with 200 using phase only features 4-14

4.20. K-nn Test Results Using Phase Features From the Coefficients Resulting

From a 7x7 Low-pass Spatial Frequency Filter 4-15

4.21. Confusion matrix for 7-nn using phase phase only features 4-15

4.22. MLP test results using 25 features from the magnitude of the 7x7 low-

pass spatial frequency filter 4-15

4.23. Confusion matrix for magnitude only using 100 hidden nodes in the mlp 4-16

4.24. K-nn test results using magnitude features from the coefficients resulting

from a 7x7 low-pass spatial frequency fiter 4-16

4.25. Confusion matrix for magnitude features using a 5-nn classifier 4-16

4.26. MLP Test Results Using 24 Features From the Imaginary Components

of the 7x7 Low-pass Spatial Filter 4-17

4.27. Confusion matrix for imaginary components only using mlp 4-17

4.28. K-nn Test Results Using Imaginary Components From the Coefficients

Resulting From a 7x7 Low-pass Spatial Frequency Filter 4-17

4.29. Confusion matrix for imaginary features using a 1-nn classifier 4-18

4.30. Best Combinations of Top 10 KLT Features and the Resulting MLP Test

Error 4-18

4.31. K-nn Test Results Using 5 KLT Coefficients 4-19

4.32. Confusion matrix for best combination of 5 KLT features using milp

(76.2% accuracy) 4-19

4.33. Confusion matrix for best combination of 5 KLT features Using 7-nn

classifier (76% accuracy) 4-19

4.34. Summary of 4-class testing 4-24

x

AFIT/GEO/ENG/93D-04

Abstract

A machine which can read unconstrained words remains an unsolved problem. For

example, automatic entry of handwritten documents into a computer is yet to be accom-

plished. Most systems attempt to segment letters of a word and read words one character

at a time. Segmenting a handwritten word is very difficult and often, the confidence of the

results is low. Another method which avoids segmentation altogether is to treat each word

as a whole. This research investigates the use of Fourier Tyansform coefficients, computed

from the whole word, for the recognition of handwritten words. To test this concept, the

particular pattern recognition problem studied consisted of classifying four handwritten

words, 'Buffalo', 'Vegas', 'Washington', 'City.' Several feature subsets of the Fourier coef-

ficients are examined. The best recognition performance of 76.2% was achieved when the

Karhunen-Loeve transform was computed on the Fourier coefficients.

xi

Handwritten Word Recognition Based on Fourier Coefficients

I. Introduction

1.1 Background

Virtually any company or organization spending large sums of money processing

documents is interested in developing a system to recognize unconstrained words, i.e. a

reading machine. For example, the United States Postal Service funds research to de-

velop an automated system for reading handwritten addresses on mail. Similarly, banking

institutions want a system to read the handwritten amount on a check. Further, the cen-

sus bureau, which processes approximately 250 million forms every ten years, is searching

for an automated system to read the occupation block on their form. A system capable

of reading handwritten words has tremendous value to the aforementioned organizations.

Such a system would also fit in nicely with the needs of the Air Force because thousands of

jobs axe dedicated to document processing and the current Department of Defense policy

is down-sizing the workforce.

Handwritten character and word recognition has been intensely investigated for the

past 50 years. L.A. Pintsov states that although many algorithms have been developed to

recognize handwritten characters, few new ideas on how to solve the problem have come

about in the past thirty years (20). This comment indicates the difficulty in machine

recognition of unconstrained text.

What is the best recognition that we can expect to achieve by a machine? The human

recognition rate error rate for unconstrained isolated characters is about 4 percent, based

on widely accepted experimental data (20). For unconstrained isolated words it may even

be greater.

1.2 Problem Statement

In broad terms, a machine that can read unconstrained 'words' is undeveloped.

Specifically, a machine's ability to read text in handwritten form by recognizing the entire

1-1

word is not yet possible. This research effort investigates the use of Fourier transform

coefficients as unique features which can be used to classify a group of handwritten words.

1.3 Summary of Current Knowledge

Recognition of 5000 machine-typed words is possible, with 99% accuracy using Fourier

coefficients, as demonstrated by O'Hair (16). The Service de Recherche Technique de la

Poste has developed a device to recognize the handwritten amount on postal checks (9).

Recognition rates reported 79% on a test set of 2492 words from 27 classes using Hidden

Markov Models (9). No rejection rates were reported.

1.4 Research Objectives

This thesis will investigate a means to classify a group of handwritten words. The

specific objectives of this research effort are as follows:

1. Develop a method of calculating features based on the 2-dimensional discrete

Fourier Transform.

2. Investigate the use of the F-ratio for feature subset selection.

3. Investigate using Karhunen-Loeve transform as a means of feature set reduction.

4. Test several feature subsets of Fourier coefficients using the multi-layer perceptron

and k-nearest neighbor.

5. Develop a method to incorporate an "add-on" feature selection procedure.

1.5 Approach and Methodology

This thesis will use data of handwritten words provided by the Center of Excellence

for Document Analysis and Recognition, State University of New York at Buffalo (15).

The database contains handwritten cities, states, ZIP codes, and others; however, only the

handwritten cities will be used. The data is limited so only a four-class problem will be

attempted. Additional data will be collected from people working in the laboratory. The

training set and test set will include 200 patterns each.

1-2

A variety of feature extraction algorithms are examined to produce a suitable feature

set for classification.

1.5.1 Fourier Analysis. The use of Fourier coefficients to classify whole, machine-

typed, words has proven very successful in past research (17). This study will pursue the

use of Fourier coefficients in the recognition of handwritten words. The thrust of the

research will be searching for the best subset of features out of the Fourier coefficients

calculated from the 2-dimensional discrete Fourier Transform.

1.5.2 Handwritten Word Classification. The primary classification techniques

that will be used are the k-nearest neighbor and the multi-layer perceptron. The k-nearest

neighbor classifier is a quick and easy way to classify a pattern. A sample is assigned to a

class based on the class given by the k nearest neighbors (5). The multi-layer perceptron

is a means to separate non-linearly separable data (23).

1.6 Thesis Organization

This thesis document is divided in the following way: Chapter II discusses past

research in the area of whole word recognition. Chapter III describes the method of this

study. Chapter IV reports the results of the study. Chapter V discusses the results and

conclusions.

1.7 Summary

The recognition of machine-typed words has proven very successful (16); however,

the recognition of handwritten words has had little success. This thesis will attack the

difficult problem of machine recognition of unconstrained handwritten words based on

features calculated from the Fourier Transform of the image of the word. Several methods

of feature subset selection will be employed.

1-3

II. Literature Review

2.1 Introduction

This literature review examines the background information relevant to this study of

handwritten word recognition. The current techniques used in handwritten word recogni-

tion are discussed as well as the justification for using the whole word to avoid character

segmentation. Finally, a brief review of the classification techniques used in this study is

presented.

2.2 Background

Much is known on where information is processed in the brain. The human visual

system has been extensively mapped out (25). The visual system compresses visual images

at a ratio of 100 to 1, which leads researchers to believe that only essential information is

needed to construct a visual model of the world (23). The big problem is that it is not

known exactly how the information is compressed. It has been theorized by Kabrisky that

this compression can be modeled in part by computing the Fourier Transform of visual

images (11). There is evidence that this may be exactly what is going on. (23, 2). A few

examples show the correlation between Fourier distances and human psychological tests.

The famous animal cracker test discussed in Dr. Rogers' book showed that the relative

closeness of pairs of animals rated by humans corresponded to their respective distance in

Fourier space (23). Similarly, Bush generated a better set of characters for pilots to see,

especially under stressful conditions (2). By using coefficients computed from the Fourier

Transform, he compared the nearest neighbor distance in Fourier space to the letters that

were misclassified by humans and discovered the mistakes related to the distance. When

changing the font style to spread out the distance in Fourier space, less mistakes were made

by humans (2). Further, Ginsburg showed that many visual illusions work not only for

humans, but also for the Fourier Transform (23).

Although every attempt is made to simulate what is happening in the human brain,

one must face the fact that at this point, all one can do is attempt to classify patterns

based on numbers. As Rogers says in his book, "Since nobody understands how brains

2-1

do any processing of significance, statements that these artificial neural networks work as

brains do are Lies, Lies, all Lies!!" (23).

2.3 Difficulty in Segmenting Characters of Words

Trying to separate the individual characters of a word is extremely difficult when the

word is handwritten, especially handwritten script. Any person can easily read this text

and pick out the characters that make up each word. Even neatly written cursive script

can easily be read. But those tasks are very difficult for a computer or machine to do. For

example, in typewritten text of the type found in magazines, when an 'r' and 'n' are side

by side, the machine may confuse the word 'modern' for 'modem' (24). Another difficulty

could occur when non-text information appears in the image (3). For instance, if a word

or group of words is underlined, such as the title of a book, a machine could mistake the

underlining as part of each character. If the word 'The' is in the title and underlined, the

machine could mistake the 'T' for and '1'. Finally, a machine could encounter difficulties in

reading text when letters overlap in terms of their defined space, an occurrence known as

kerning. Letter overlap commonly occurs in cursive or italic writing where a capital letter

is followed by a lower case letter that sits directly beneath a portion of the capitalized

letter. Therefore, the question was asked, is there any way to avoid these difficulties?

2.4 Current Methods of Handwritten Word Recognition

In his 1985 thesis, O'Hair proposed treating words as single symbols to avoid the

difficult segmentation problem of separating each word into its individual characters (16).

His experiments were tested on typewritten text. By collecting features of the words from

the lower harmonics of the 2-dimensional discrete Fourier transform and classifying them

with the k-nearest neighbor algorithm, he achieved a recognition rate of 94%. He continued

this work, expanding his database of typewritten words to include words using all fonts and

various character separations. Several distance metrics were used to measure the features

against a template of the word. He achieved a 99% recognition rate on 5,000 words (17).

Srihari uses two methods for word recognition (27). One of the methods is based

on segmenting the word into characters and identifying the characters (27). Using this

2-2

method, they achieved a 92.0% recognition rate on a ten class problem with 3,000 words

(27). The second method they used is to break the word up into segments and recognize

each segment using Hidden Markov Models (27). The recognition rate on the same set of

data in 93% (27). They also performed tests interpreting handwritten address on mail at

a current performance of 44% with 6% error (27).

Tin Kam Ho, et al. experimented with machine-typed whole word recognition (10).

They used a combination of features based on character segmentation and the use of the

whole word (10). This was one of the first attempts at using a combination of techniques to

recognize words (10). The features they used in the the whole word analysis were based on

using a 7x7 template and convolving with the image. This resulted in a 1280-dimensional

feature vector. Secondly, stroke direction was used, resulting in a 160-dimensional feature

vector. Four types of strokes directions were used; east-west, northeast-southwest, north-

south, and northwest-southeast. Then a nearest neighbor classifier was used to classify the

word. This decision was then combined with results from five other independent classifiers

to get a consensus ranking. The experimental results showed a 88.9% recognition rate

with 1671 words in a 33850 word lexicon. This is a good example of the use of combining

independent classifiers.

Researchers in France are currently developing a real world system to read the amount

on a postal check (13). They compare the handwritten word amount to the handwritten

digit amount to verify the amount on the check. In the recognition of the handwritten word

amount, they fuse two methods for recognition. The two methods are based on whole word

recognition and charar ter segmentation of the whole word into characters. The whole word

method uses dynamic time-warping. By looking for vertical lines, loops, horizontal lines,

and dots, they built a representation of the word by which to compare to the reference

codebook words. The fusion process compares the output classification of the whole word

method to the character segmentation method. In the final process, the digit amount is

compared to the handwritten amount and the final amount is determined. As of 1991, the

recognition rate was 40% on a set of 6,400 samples. This example illustrates the difficulty

of handwritten word recognition on real world data.

2-3

Some research has been done in trying to characterize the variability in cursive hand-

writing (21). Some of the characteristics examined were dots, dashes, writing slant, zones

and baselines, zone heights, local min and max, concavity and curvature, loops or spikes,

cusps, and the way letters are connected. The conclusions were that it is very difficult to

characterize styles of handwriting. Recognition rates for four different styles of handwrit-

ing resulted in 89.5%, 82.0%, 49.0%, and 21.0%. Again, trying to find the appropriate

fet 1ures continues to elude researchers today.

Hidden Markov Models, which have been successful in speech recognition are now

being applied to handwritten word recognition. Hidden Markov Models are effective in

lowering the sensitivity to many variations in styles of handwriting (7). This is another

technique that can avoid the difficult segmentation stage (7). Bertille and Yacoubi used

Hidden Markov Models to recognize postal codes without segmentation (1). They achieved

a range of recognition rates from 28% to 59% for 14 and 16 states respectively (1). Other

research which uses Hidden Markov Models is reported. Gilloux, who heads the Service

de Recherche Technique de la Poste, developed a prototype system to recognize the hand-

written amount on a check (9). The words are segmented into segments which are used

for recognition using Hidden Markov Models. The results reported a 79% recognition rate

on a test set of 2492 words of 27 classes (9). They also reported that the system had poor

generalization capabilities. (9)

All the methods described so far involve using some type of algorithm or combina-

tion of algorithms. J.C. Simon describes several principles which allow for more robust

algorithms in recognizing handwritten words (26). The principles he applies are as follows:

1) several levels of recognition where each level is assigned a probability of occurrence, 2)

use independent sources of information and estimate joint performance, and 3) feedback

is utilized between each level of recognition (26). These principles are based on neuro-

physiological evidence (26). The results reported applying these principles showed a 79.5%

recognition rate on a lexicon of 25 words (26).

2-4

2.5 Feature Eztraction

All pattern recognition people will say that good features makes for good recognition.

Finding features that distinguish one pattern from another is the key to a viable pattern

recognition system. "Most papers give no reasons for the choice of features. In fact,

most features in pattern recognition work are chosen on the grounds that the choice is

intuitively reasonable. Once the features have been chosen authors apply sophisticated

statistical methods in order to minimize errors. In most cases, however, the game has

been lost with the choice of features." (20). "There is an unfortunate tendency in many

articles describing laboratory systems to describe the classification method in detail, and

to give inadequate or no information about the features used as the basis for classification,

how they are measured, and most importantly, how they were derived and why they were

chosen over other feature metrics (20)." Features are not usually defined in terms of style

variations or distortion (20). It seems reasonable that much effort should be placed in

developing good features. Of course, this is the hard part and why this problem has

been around for so long. Especially when you have people believing that, "There is no

unique computational procedure which can "extract" the identity of a character from its

image." (20) If this is true, then computing the Fourier transform will be of no value. That

is what this study intends to find out.

If it is true that no computational procedure can extract the identity of a character or

a word, then the other option is to use the raw data. According to Fukunaga, "... as long

as features are computed from the measurements, the set of features cannot carry more

classification information than the measurements." (6) Raw measurements in the case of

the image of a word are raw pixel values. These pixel values become the features.

Pintsov discusses two types of models which can describe a character. The first, called

generative, is thinking of the path that a writing instrument follows when generating a

character. How the character is formed is what can be analyzed. The second, called

transformative, believes in an ideal form of the character, so the shape itself is analyzed

in this case. It is not known exactly what the ideal character form is. Because there

is no formal definition of a character, one must rely on data of human recognition and

2-5

perception. Points where the contour changes direction is much more informative than

points on flat portions.

What happens in our visual system when we see an image? When looking at words,

or anything for that matter, the brain's neurons are firing to produce the illusion in the

brain of the scene being viewed. The image falling on the retina is compressed by a factor

of 100:1 as it leaves the retina and this data is enough information to construct the word

in the brain (23). At this point, the compressed data is the feature set used by the brain.

Now then, the image that falls on the retina may contain other information that is not

part of the word being looked at. So the actual compression of the word may not be 100:1,

but it certainly is reduced to some amount. For a computer, at this point, the image of

the word is represented by an array of pixel values and no other information. If we are

to compress this information, how do we do it? A starting place may be to binarize the

image.

Recognizing a handwritten word is similar to recognizing say a hand or foot or nose,

even though there are all different types of variations, the object or word is the same. The

brain somehow extracts constant features. The primary visual cortex processes color, form,

and motion in separate areas (25) So there is more information contained in a handwritten

word, such as color and whether it is moving or not.

If we are searching for features based on evidence of features used by humans and

animals, then, "The obvious place to start is to emulate the ruthless preprocessing that is

accomplished by our biological sensors." (23)

2.6 Previous Success using Fourier Features

A lot of work has been done in the field of pattern recognition using Fourier coeffi-

cients as features, especially trying to classify machine printed numbers, letters, and words.

Radoy achieved success trying to recognize machine generated letters of the alphabet (22).

The features he used to classify the letters came from computing the 2 dimensional dis-

crete Fourier Transform. Tallman tried to relate the classification of visual images by the

human visual system to a digital simulation based on spatial filtering (29). He filtered

2-6

out the low order Fourier frequency components and was able to recognize handwritten

letters of the alphabet with a 95.8 percent accuracy using the 7 x 7 low pass frequency

filter. And more recently, O'Hair achieved a successful recognition rate by classifying 5000

machine-printed words using low order Fourier coefficients (17). The continued success

of the Fourier Transform in classifying letters of the alphabet and machine-typed words

makes the Fourier Transform an obvious choice to use on handwritten words.

2.7 Classification Techniques

2.7.1 k-nearest neighbor. The k-nearest neighbor method for classification uses

the rule that a sample is assigned a class based on the class given by the k nearest neighbors

(5) In this study, each pattern will have a spot in Fourier space. A Euclidean distance is

calculated to find the closest neighbor.

The program used to run a k-nn neighbor algorithm is called LNKnet (12). The

training portion of the program stores all the input patterns. The testing portion of the

program computes the Euclidean distance from the input pattern to all the stored patterns.

"The class selected for the test pattern is the one with a plurality of the classes of the k

nearest neighbors. (12)" Appendix A contains a tutorial for using LNKnet.

2.7.2 multi-layer perceptron. The multi-layer perceptron is a method that devel-

ops a non-linear discriminant function during training that separates training data. The

architecture of the network consists of three layers; an input layer, hidden layer, and out-

put layer. The input layer has as many inputs as the number of features for each pattern,

while the number of output nodes is determined by the number of classes to be recognized.

The weighted sums of the input layer is passed through a sigmoid function at each hidden

node, likewise the weighted sum of the hidden layer is passed through a sigmoid function

at each output node. During training, the weights are updated to provide the minimum

error at the output layer. A gradient descent method is used to update the weights through

back propagation. For testing, the class corresponding to the highest output node value is

determined the class of the pattern (12).

2-7

2.7.3 Fusion of Classifiers. The state of the art pattern recognition techniques

used in Japan today are based on what they call "multi-expert" recognition (pg 8). Multi-

expert recognition enhances the overall recognition by combining several independent

methods of recognition. A character recognition competition was held in 1992 and the

highest three scoring algorithms were combined and used to classify the test set used dur-

ing the competition. The test set included 10,000 samples of the digits 0-9. The results

showed an improvement from 96.2% to 99%.

Guerts reported a 4.3% increase in recognition of targets by fusing independent

classifiers acting on the same data.

No matter how fancy the classification technique though, the features are the most

important part. Without the right features, the best classification routine won't work.

2.8 Conclusion

This chapter of the thesis reviewed current techniques in handwritten word recogni-

tion and the past success of Fourier coefficients in recognizing machine-typed text. It is

the goal of this study to determine whether or not it is feasible to use Fourier coefficients

computed from handwritten words for classification.

2-8

III. Approach and Methodology

3.1 Introduction

This part of the thesis describes the method used in this study to determine whether

or not the Fourier coefficients computed from the word images are of value in classifying

hand-printed words. A description of the data used, how it was preprocessed, the method

of feature extraction, and the type of classification used encompasses this chapter.

3.2 Data Set Description

3.2.1 Handwritten Words. In general, it is very difficult to obtain real world data

for pattern recognition. It is especially difficult trying to find a good set of handwritten

words for an experiment. The State University of New York at Buffalo produced a database

of handwritten cities, states, and Zip codes. It is from this database that some of the

handwritten words used in this study were obtained.

To further describe the difficulties in obtaining data, the database contains over

3000 handwritten words, yet, few examples of any particular word existed in the database;

therefore, the words with the most occurrences were chosen. The words 'buffalo', 'city',

'washington', and 'vegas' topped the list of the most examples. These examples consisted

of printed as well as script styles of writing. Only the printed samples were selected for the

data set. This resulted in a data set of 4 classes with 18 patterns in each class. This is not

enough data to have meaningful results, so hand-printed samples of the words 'buffalo',

'city', 'washington', and 'vegas' were collected from various people in our lab. The final

data set for the 4-class problem contained 400 samples, 100 from each class.

3.2.2 Examples of the Words. Figure 3.1 displays some examples of the data.

3-1

Figure 3.1 Examples of Handwritten Words

3-2

3.2.3 Searching the Database for Words. After determining which words will be

used for an experiment, a script file to search the database for the particular words desired

can be used. The script file searches the image truth files and when it finds a word it is

searching for, it converts the file to a sunraster image file. See Appendix B.

3.3 Preprocessing the Images

Since the words were already well segmented, it is only necessary to do some minor

preprocessing. The two preprocessing techniques used are described below.

3.3.1 Binarization. A binarization of the image is accomplished mainly to stan-

dardize the images. Some of the images have darker backgrounds than others. After

binarization, a pixel value that represents part of the word has a pixel value of zero and

any part of the image that is background has a pixel value of 255. Figure 3.2 illustrates

the original image before binarization. 3.3 illustrates the image after binarization.

3.3.2 Window the image. In this step, the image is cropped so that the word

completely fills the window of the image. This technique is done based on the advice of Dr.

Kabrisky. Capt O'Hair did all his work using words that completely filled the window (17).

Performing this step provides scale invariance. Figure 3.4 illustrates the cropped image.

Again, this preprocessing method assumes that word segmentation can be accomplished.

VF(Y..

.........

Figure 3.2 Original Image

3-3

IV

Figure 3.3 Binaized fiage

Figure 3.4 Cropped Image

3-4

3.4 Feature Extraction

3.4.1 Fourier Feature Extraction. The two-dimensional discrete Fourier Trans-

form is described by the following equation:

S(f., fy) = E E s(x, y) [cos27r(f.x + fry) - isin27r(ffx + fjy)]

where,

"* f= spatial frequency in x

" fv = spatial frequency in y

"* M = height of image in pixels

"* N = length of image in pixels

"* Range of spatial frequencies in x to calculate up to 10 harmonics: -10/N, -9/N, ..., 9/N, 10/N

"* Range of spatial frequencies in y to calculate up to 10 harmonics: -10/M, -9/M, ... , 9/M, 10/M

"* x,y = location of real valued input

"* s(x,y) = intensity of image at location x,y

Each image of a handwritten word is in the form of a two-dimensional array of gray

level pixel values ranging from 0 to 255. The intensity, s(x,y), of the image at pixel location

x,y is a value 0 or 255. The array has a height M and a length N.

By taking advantage of symmetry of the Fourier Transform, only half of the coeffi-

cients need to be calculated. For example, the cosine is an even function and the sine is

an odd function so the the following properties apply: (8)

"* Re[F(A,B)] = Re[F(-A, -B)]

"* Re[F(-A,B)] - Re[F(A, -B)]

"* Im[F(A,B)] =-Im[F(-A, -B)]

"* Im[F(-A,B)] =-Im[F(A, -B)]

When calculating discrete values of the Fourier Transform up to the third harmonic,

a total of 49 cosine (48 plus dc term) and 49 sine terms (dc term is zero) are produced.

3-5

Using the properties listed above, only half the cosine and sine terms need to be calculated.

This results in 25 cosine terms and 24 sine terms. Now 49 unique coefficients are calculated

and no duplication exists. This is not only important to reduce calculations but it also

eliminates redundancy in the feature set.

3.5 Energy Normalization

Once the Fourier coefficients are calculated, they are energy normalized. Since each

image of a word has a different size pixel array, a means to normalize the values to an

even playing ground is necessary. The energy normalization used in this case is to divide

each term by the square-root of the sum of the squares of each coefficient. The following

formula describes this.

< s , >= (3.1)

where,

0 < S"' > = the normalized (r,c)'th element

* r = rows

e c = columns

* n = number of harmonics

3.6 Calculating 2D Discrete Fourier Transform

For each image, the Fourier Transform was computed. A total of 10 harmonics were

computed. Effectively this implements a 21x21 spatial filter in the frequency domain. A

total of 441 numbers result for each word image. From this set of numbers, a more specific

spatial frequency filter can be extracted. For example, a 7 x 7 spatial frequency filter which

captures the lower 3 harmonics, or a 3x5 spatial filter, etc.

Figure 3.5 illustrates the numbers used to specify a particular Fourier coefficient

when computing the Fourier Transform. The features above the horizontal line are the

cosine terms and the features below the line are the sine terms. The dc term is in the

middle. Each square outline represents a particular harmonic. The results chapter refers

3-6

to these numbers. When a 7x7 spatial frequency filter is mentioned, it is referring to the

7x 7 square centered on the dc term.

Figure 3.6 and 3.7 illustrate the reconstruction of a word image from the lower three

harmonics and lower ten harmonics respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 91 92 83 94

95 86 87 88 89 90 91 92 93 94 95 96 97 99 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143•144 145 146 147

149 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

169 170 171 172 173 174 175 176 177 178 179 190 181192 183 194 185 186 187 198 199

190 191 192 193 194 195 196 197 199 199 200 201 1202 203 204 205 206 207 208 209 210

211 212 213 214 215 216 217 218 219 220 2211222 223 224 225 226 227 228 22 230 231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

274 275 276 277 278 279 280 281 282 283 284 295 296 287 298 299 290 291 292 293 294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

359 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

Figure 3.5 Feature Numbers for 10 Harmonics of the 2-dimensional discrete Fourier
Transform

3-7

Figure 3.6 Image of 'Buffalo' Reconstructed From Three V -nonics

Figure 3.7 Image of 'Buffalo' Reconstructed From Ten Harmonics

3.6,1 Figurt ,of- Nerit features. "The ability of a feature to separate two classes

depends on the distance between classes and the scatter within classes (18)." Fisher's

discriminant is a method to characterize the separability of features from two classes based

on distance between classes and scatter within classes. This method is based on the

following equation from Parsons (18).

3-8

(f s - 2)2 (3.2)

An extension to multiple classes is defined by the F ratio equation or generalized

Fisher's discriminant defined in Equation 3.3 (18).

F = variance of the means(over all classes in one dim.) (3.3)
mean of the variance(within classes in one dim.)

For n features and m classes this is defined mathematically,

F[1/(M _ 1) (A - I2
[1/ (M(n - 1) E =EI (zj - A))] (3.4)

where,

* x = ith feature for class j

e - mean of all features for class j

S=• -mean of all measurements over all classes

This can be used to evaluate each feature's ability to separate the classes. The higher

the F ratio, the more separable it is and therefore more easily classifiable. For the 441

features that were calculated by the Fourier transform, an F ratio was calculated for each

feature over 100 samples from each class. A rank ordering of the F ratio was done to see

which features had the most separability. According to Parson's, selecting the best F ratio

features for classification is not safe (18). Although, selecting the best group of features

for classification can be heuristic in nature. This assumption will be tested.

3.7 Feature Subset Evaluation

Once all 441 features are calculated from the Fourier Transform, it is desirable to

find a subset of the 441 features with which to use for classification. Not only will a subset

reduce the amount of computations, but it also may reveal a much better feature set with

which to classify. Several methods are used to try to select the right group of features.

3-9

The methods discussed are spatially filtering the Fourier Transform, calculating a figure

of merit on each dimension of the data, calculating the Karhunen-Loeve transform, and

using magnitude and phase information.

S. 7.1 A 7x 7 Spatial Filter. As outlined in Chapter 2 of this document, the lower

3 harmonics have proven very successful in terms of classification of digits and machine

printed words. So naturally, this is one feature set that is used. The feature subset is then

developed by extracting the 7x7 array of features from the 21x21 array calculated by the

Fourier Transform. Once the subset is established, the classification is performed.

3.7.2 Figure-of-Merit. The figure of merit or F-ratio is calculated on all 441

dimensions of the feature set. The result is a rank ordering of F-ratios and their cor-

responding feature. Again, the higher the F-ratio, the more separable the data in that

particular dimension. From this ranking, the top ten features are selected to be mem-

bers of the feature subset. The classification technique performed is the addon technique

described later.

In addition, the top 49 figure of merit features are selected for another feature subset.

This will allow a comparison between using features from the lower 3 harmonics versus

using the highest ranking figure-of-merit features.

3.7.3 Karhunen-Loeve Transformation. The goal in doing a Karhunen-Loeve

transformation on the feature set is to obtain features which are best suited for separating

classes (18). To compute the Karhunen-Loeve transform of the feature set, the covariance

matrix of the feature set is computed, then the eigenvalues and respective eigenvectors

of the covariance matrix are calculated and arranged in descending eigenvalue order (28).

Dimensionality of the original feature set is reduced by the number of eigenvectors selected.

The eigenvectors selected make up the transformation matrix A in the equation, y =A x,

where x is the original feature set and y is the new feature set (18). The eigenvalues give

the variance of the new features in y (18). The new feature space contains a set of features

with the greatest variance and thus these features are considered the "true" features (18).

The features with low variances are considered noise and were eliminated (18). In effect,

3-10

the transformation has computed a new orthogonal feature space with each dimension

corresponding to a variance, the first dimension having the greatest variance.

A Karhunen-Loeve transform was computed on the original feature set of 441 features

calculated from the Fourier Transform. The 441 dimensions were reduced to 10 dimensions

by placing 10 eigenvectors with the largest eigenvalue in the transformation matrix, A. A

new feature subset consisting of 10 features per sample is then tested for classification.

3.7.4 Magnitude and Phase. Since so much information of an object is contained

in the phase information, another feature subset was developed by computing the phase

of a 7x7 spatial frequency filter. In addition, the magnitude was computed for another

feature subset. The phase was obtained by computing the arctan of the sine term divided

by the cosine term for a specific set of spatial frequencies. For example, 24 unique phase

terms are calculated from the 49 unique terms generated from calculating 3 harmonics of

the Fourier Transform. The magnitude is obtained by computing the square root of the

sum of the squares of the specific cosine and sine term.

Four separate feature subsets were generated. The first feature subset consisted of

24 features per sample representing the phase of a 7 x 7 spatial frequency filter. The second

feature subset contained 25 features per sample representing the magnitude. The dc term

is also included. The third feature subset contained 49 features representing both the phase

and the magnitude. The fourth feature subset contained only the imaginary components

or the sine terms. This subset consisted of 24 features per sample.

3.7.5 Add-on Procedure. Ideally, it would be desirable to test all combinations of

features to find the best set with which to classify; however, the amount of computation

is prohibitive for this method, especially for a large number of features. There are other

methods which try to pair down the best combinations of features without testing each

combination. One method is called the add-on procedure (18).

In the add-on procedure, every feature from the feature set is evaluated by testing

its classification ability. The best individual feature is then selected to be evaluated in

combination with each remaining feature. The best combination of the two features is then

3-11

selected to be evaluated in combination with each remaining feature. The best combination

of three features... and so on until the desired subset of features is attained. The desired

subset of features is the one that gives the best performance. This method requires only

k(2N + 1 -k)/2 evaluations, where k is the number of features in the subset and N is the

total number of features under consideration (18). The 441 features calculated from the

Fourier Transform is a large number to evaluate even using the add-on procedure. The

feature subsets described above are the feature set that are classified using this addon

procedure.

3.7.6 Miscellaneous Feature Subsets. A few additional feature subsets were gen-

erated for testing. In the case of the 2-class problem, each harmonic was evaluated indi-

vidually, with and without the dc term. Further, for the 2-class problem, feature sets were

built by adding single features at a time, from the lower three harmonics and from the

FOM features, up to 49 features. Testing was completed after each addition of a feature.

3.8 Data Normalization

To achieve the feature set's invariance to scale and displacement, data normalization

is done (5). This is accomplished by calculating the means and standard deviation for each

input dimension. Then each input dimension, for each sample, is subtracted by the mean

and divided by the standard deviation for that dimension. The end result is data with

zero mean and unit variance in all dimensions.

It is interesting to note that the F ratio is the same whether or not the data has

been normalized. This is because multiplying a random variable by a constant multiplies

its variance by the square of that constant while adding a constant to a random variable

leaves the variance unchanged (4). In the F ratio, the variance of the means will in effect

by multiplied by 1/s2, where s is the variance and the means of the variance will also be

multiplied by 1/s2. The 1/s2 will be cancelled out and the F ratio remains unchanged.

3-12

3.9 Classification

The classification tools used in this study are the multi-layer perceptron and the knn

classifier as described in Chapter 2 of this document. A program specifically designed for

pattern recognition, called LNKnet (12), was used for classification using the multi-layer

perceptron and the knn classifier. Some modification of the program is necessary to employ

the add-on technique and to test the data set after each epoch of training. The appendices

contains the script files that are used to accomplish this.

3.10 LNKnet Parameters

Every test conducted in LNKnet, using the multi-layer perceptron, had the same

parameters. A list of the parameters is given below.

"* Training set: 50 random samples/class

"* Test set: 50 random samples/class

"* Epoch of training: 25

"* Number of hidden nodes: 50

"* Step size: 0.05

"* Momentum : 0.0

"* Tolerance : 0.2 (if the error of an output node is less than 0.2, the weights are not

updated)

"* Decay 0.0

"* Error Function : Squared Error

"* Output Node Function : Standard Sigmoid

"* Weight update after each trial

"* Random presentation order

3-13

3.11 Conclusion

This chapter described the methods used to determine whether or not Fourier co-

efficients computed from the whole word are of value in classifying hand-printed words.

A description of the data set used and how the data was preprocessed was given. Then,

computing the Fourier Transform of each word image resulted in a 441 dimensional feature

vector for each word. All the feature vectors together built the feature set. From this

feature set, many feature subsets were selected. The feature subsets consisted of figure-of-

merit features, 7x 7 spatial filter features, combinations of magnitude and phase features,

Karhunen-Loeve features, and features from add-on testing. The next chapter reports the

results of 2-class and 4-class testing using these feature sets.

3-14

IV. Results

4.1 Results of a 2-class problem using figure-of-merit features

To determine whether using Fourier coefficients as features for recognition is worth-

while, a simple 2-class problem was attempted. The two classes for this problem are the

words 'Buffalo' and 'City.' Beginning with the pixelized image of the word and comput-

ing the discrete Fourier transform of the image, the resulting coefficients, both cosine and

sine terms, form the feature set. Fourier coefficients up to the tenth harmonic are calcu-

lated. It is from this feature set that the best subset of features are sought. In this case,

figure-of-merit features are used.

A figure-of-merit was computed across each dimension. In other words, the separa-

bility of each dimension was calculated independent of any other dimension. A number

is given corresponding to it separability. The higher the number, the better separation

between classes for that dimension. Selecting the features with the highest figure-of-merit

is how the feature subset is built.

The "add-on" procedure described in Chapter 3 is the method used to find the best

combination of 5 features out the the ten features with the highest figure-of-merit. So

actually, a subset of features is obtained from the ten features with the highest figure-of-

merit. Then, from this subset, the best combination of 5 features forms the final feature

subset.

Table 4.1 lists the top ten figure-of-merit features, their corresponding figure-of-merit

raid harmonic. By referring to Figure 3-5, the feature number listed can be traced to the

particular Fourier coefficient calculated. One of the reasons why ten harmonics is calculated

is to find out if any of the higher harmonics have good separability. It is interesting to

note that all but one of the highest F-ratios are within a 7 x 7 low pass spatial frequency

filter. Considering the previous success with using 7x7 spatial filters on recognition of

characters, it is not surprising to find that the most separable dimensions are within the

3 lowest harmonics. To give some meaning to the figure-of-merit numbers listed in table

4.1, Figure 4.2 plots a histogram of feature number 245 for 100 samples from both classes.

This illustrates the meaning of the figure-of-merit, .32, for feature number 245. Observing

4-1

Table 4.1 Top 10 Most Separable Features, Their Corresponding FOM and Harmonic

Feature Figure-of-Merit Harmonic
245 0.32 3
222 0.25 1
242 0.23 1
178 0.22 2
239 0.21 3
179 0.18 2
216 0.18 5
220 0.17 1
180 0.16 2

198 0.13 1 2 _j

Figure representing a 20 bin histogram of data points for
2 olasses. feature 245

14

14

1 \

*00 -G0 0 60 100 180 200

Figure 4.1 Histogram of Feature 198 for 200 Samples, 100/class

4-2

this graph, it shows that the feature with the highest figure-of-merit is not very separable.

For comparison, 4.7 shows the histogram for feature 198 with a 0.13 figure-of-merit.

Figure representing a 20 bin histogram of dcata points for
2 classes, feature 196

14

12 -

-10

o -80 0 60 100

Figure 4.2 Histogram of Feature 198 for 200 Samples, 100/class

Since all remaining features have a lower F-ratio than feature number 245, no single

feature alone is usable for classification; however, the combination of two or more not very

separable features may further separate the classes. The "addon" procedure will find a

combination of features that will increase the separability.

The training set and test set both consisted of 100 samples randomly selected and

evenly distributed for each class. Three trials were performed and the results were averaged.

The training error reported corresponds to the lowest test error. So when the lowest test

error occurred, the corresponding training error was noted. When training the multilayer

perceptron it is possible that as the training error decreases and eventually reaches zero,

the test error may not be the lowest. Figure 4.3 illustrates this effect during a run. The test

set was tested after each epoch of training. As the figure shows, the test error decreases

along with the training error but it reaches a point, at 23% error after 11 epochs, where

it begins to increase even though the training error is decreasing. To overcome this effect,

testing was conducted after each epoch of training and the lowest test error was selected.

Tables 4.2 and 4.3 shows the results of classification testing using the addon procedure to

find the best combination of 5 features out of the 10 FOM features. The test error reported

indicate the lowest test error during training and the training error reported is where the

test error was minimized. The best combination of 5 features did not constitute the top

4-3

45

40

38

, 30 Tinting Error

25

20 Training Error

20

0 5 10 15 20 25
Num"r of Epochs

Figure 4.3 Training and Testing Error vs Epochs of Training

5 FOM features. This supports the notion that the combination of 2 relatively separable

features may not be the best combination of any 2 features. After the combination is made

the separability must be determined. In this case, the classification method determined

the separability of the combination of features by the test results. Using this method, the

multilayer perceptron performed the best. 84 out of 100 were correctly classified using 5

features.

Table 4.2 Best Combinations of Top 10 FOM Features and the Resulting MLP Test Error

Feature % Error(testing) Rmserr(testing) % Error(training)
222 26 .44 35

222,178 21 .42 26
222,178,180 22 .43 25

222,178,180,245 19 .41 21
222,178,180,245,198 16 .38 17

4.2 Results of 2-class Problem Using 49 Features Prom Lower Three Harmonics

A test was done to evaluate the test error per addition of single features, beginning

with one feature and adding a feature up to 49 features. In this case the features were the

4-4

Table 4.3 Best Combinations of Top 10 FOM Features and the Resulting 1-nn Test Error

Feature % Error(testing) Rmserr(testing)
178 40 .63

178,179 36 .6
178,179,180 30 .55

178,179,180,222 28 .53
178,179,180,222,198 26 .5

49 features of the 3 lower harmonics. Notice the test error drops quickly as a few features

are added then it reaches a point where no improvement in test error is achieved with

additional features. The lowest test error was 19.0%. Not only is it important to find good

features, but it is just as important to find the right number of features that will give the

best recognition. Figure 4.2 shows the results and Table 4.4 lists the specific features.

so

45

40

35 Testing Error

30

IR 25

20

is

10 - Tralng Error

5
0 5 10 15 20 25 30 38 40 45 50

Number ol Features from the Lowor Three Harmonkeg

Figure 4.4 MLP Test Error vs Number of Features in the Lower Three Harmonics

4.3 Results of 2-class Problem Using 49 FOM features

The same test described in the previous section was completed using 49 FOM fea-

tures. In this case, the FOM features used were the ones with the highest FOM. The

first feature corresponded to the highest figure of merit and each additional feature cor-

4-5

Table 4.4 Listing of the 49 Fourier Features Used

Ftr FT coeff Harmonic Ftr PFT coef Harmonic Ftr FT coed Harmonic
1 221 dc 10 177 2nd 26 155 3rd
2 222 lt 11 261 27 281
3 220 12 178 28 156
4 199 13 262 29 282
5 243 14 179 30 157
6 201 15 263 31 283
7 241 16 180 32 158
8 200 17 264 33 284
9 242 18 181 34 159

19 265 35 285
20 198 36 160
21 240 37 286
22 202 38 161
23 244 39 287
24 219 40 176
25 223 41 260

42 197
43 239
44 182
45 266
46 203
47 245
48 218
49 224 1 1

responded to the next highest figure of merit. Again, the test error drops quickdy but

reaches a point where additional features do not enhance recognition. Figures 4.5 and 4.6

shows the results of classification testing and table 4.5 lists the specific features. Notice

the test error when classifying with the 1-nn, that is, the test error reaches a minimum

and then slowly increases with additional features. This supports Dr. Kabrisky's theory

that the addition of more features only adds noise and hence, the recognition performance

is decreased.

Table 4.5 List of the 49 FOM features

Num FOM Feature
1 245 8 220 15 285 22 260 29 207 36 135 43 165
2 222 9 180 16 201 23 163 30 247 37 219 44 224
3 242 10 198 17 223 24 261 31 158 38 197 45 119
4 178 11 243 18 246 25 269 32 174 39 240 46 230
5 239 12 264 19 244 26 193 33 182 40 241 47 199
6 179 13 218 20 196 27 370 34 227 41 327 48 268
"7 216 14 203 21 237 28 226 35 234 42 229 49 342

4-6

35

30

25\-Tat fo

20-

15

Traiwining Error'

101
0 5 10 15 20 25 30 35 40 45 50

Number of Top FOM features

Figure 4.5 MLP Test Error vs Number of Top FOM Features

40

38

36

34

32

30 o

• 28

26

24

22

20

is
0 5 10 15 20 25 30 35 40 45 50

Number of Top FOM Features

Figure 4.6 1-nn test error vs number of top FOM features

4-7

4.4 Results of Some Miscellaneous Feature Subsets

To conclude the testing of the 2-class problem, some miscellaneous feature subsets

were built and tested. Table 4.6 lists the results. The imaginary terms alone performed

well for recognition purposes as did the first harmonic. The performance was degraded for

each subsequent harmonic.

Table 4.6 MLP Test Results from Various Feature Combinations

Features % Error(testing) Rmserr(testing) % Error(training)
3 x 5 23 .32 20

imag only(lower three harmonics) 17 .31 14
imag only(lower three harmonics) plus dc term 25 .35 16

1st harmonic 23 .31 27
1st harmonic plus dc 24 .34 18

2nd harmonic 26 .36 21
2nd harmonic plus dc 22 .34 25

3rd harmonic 30 .39 15
3rd harmonic plus dc 30 .38 13

4.5 4-Class Results

The results of the 2-class problem show promise in using Fourier coefficients as fea-

tures. Further testing, using more feature subsets, and additional classes are needed to

confirm the recognition capability of Fourier coefficients. The next set of results examines

the use of several new feature subsets. Two of the same sets used for the two class problem

are again used for the 4-class problem. They include the 7x7 Spatial Frequency Filter

and the 10 figure-of-merit features. A more in-depth look at feature subsets is completed

by the addition of magnitude, phase, and Karhunen-Loeve features. The two additional

classes include 'Vegas' and 'Washington.'

4.6 Results of a 4-class Problem Using FOM features

This experiment is the same as described in the 2-class problem using figure-of-merit

features. Table 4.7 lists the top ten figure-of-merit features, their corresponding figure-of-

merit and harmonic for the 4-class data. By referring to figure 3-1, the feature number

listed can be traced to the particular Fourier coefficient calculated. Again, it is interesting

4-8

Table 4.7 Top 10 Most Separable Features, Their Corresponding FOM and Harmonic

Feature Figure-of-Merit Harmonic
198 0.68 1
243 0.62 1
200 0.53 1
179 0.49 2
219 0.47 2
220 0.47 1
223 0.37 2
245 0.27 1
244 0.25 1
217 0.23 4

to note that all but one of the highest F-ratios axe within a 7 x 7 low pass spatial frequency

filter. In this case, six of the top ten are within the first harmonic. Not only is the bulk of

the information in the lower harmonics, but also, this information is the most separable.

Tables 4.8 and 4.9 shows the results of classification testing using the addon procedure to

find the best combination of 5 features out of the 10 FOM features. The combination of

five features correctly classified 73 out of 100.

Table 4.8 Best Combinations of Top 10 FOM Features and the Resulting MLP Test Error

Feature % Error(testing) Rmserr(testing) % Error(training)
198 56 .43 58

198,223 45 .40 49
198,223,219 36 .37 38

198,223,219,243 32 .33 34
198,223,219,243,200 27 .30 24

Table 4.9 Confusion matrix for Best Combination of 5 FOM features

Actual Classified
class 0 1 2 3

0 35 3 7 5
1 0 31 19 0
2 0 4 44 2
3 6 1 3 40

4-9

4.7 Results of a 4 class Problem Using Features from a 7x 7 Low-pass Spatial Frequency

Filter

This section reports on the results of using a 7x7 spatial frequency filter on the

Fourier coefficients. The feature set consisted of 49 terms which included 24 cosine and

sine terms plus the dc term. Classification testing was completed using both the multilayer

perceptron and the knn classifier. For the multilayer perceptron, only one parameter was

changed and that was the number of hidden nodes. A test was done with 50, 100, and 200

hidden nodes to see if the number of hidden nodes had any effect. For the knn classifier

the only parameter changed was the number of k neighbors. Four different neighbors were

used, they were 1, 3, 5, and 7.

Table 4.10 lists the results of this set of testing by the multilayer perceptron. The

number of hidden nodes in the multilayer perceptron had little effect. By increasing the

number of classes, the recognition performance decreased to 62% correct from the 77%

percent achieved in the 2-class case. This indicates that the features tend to cluster together

with the addition of more classes. Table 4.11 list the results of the same set using the k-nn

classifier. The knn classification rate of 26.5% on the test set surpassed the results of

testing with the multilayer perceptron. Calculating the distance to additional neighbors

actually degrades the performance of the knn classifier. Table 4.12 list the confusion

matrix on the test set with the best classification rate for this section of testing. The

references to the classes are as follows: 0 - 'Buffalo', 1 - 'Vegas', 2 - 'Washington', 3 -

'City'. The recognition rate for each class is similar, not one class was easily recognizable.

This particular set of features have discrimination potential. The results indicate that as a

rough cut for classifying words, a 73.5% recognition rate was achieved. Clearly, differences

in handwritten words are seen in the lower 3 harmonics of the Fourier Transform. Finally,

Table 4.10 MLP Test Results Using 49 Features From the 7x7 Low-pass Spatial Filter

Hidden Nodes % Error(testing) Rmserr(testing) % Error(training)
50 39 .37 12
100 38 .39 8
200 40 .42 9

Figure 4.7 illustrates the test error as individual features are added one at a time.

4-10

Table 4.11 K-nn Test Results Using 49 Features From the 7x7 Low-pass Spatial Filter

k % Error (testing) Rmserr (testing)
1 26.5 .364
3 27.0 .315
5 32.5 .323
7 35.0 .339

Table 4.12 Confusion matrix for the 1-nn Using 49 Feature From the 7x7 Low-pass Spa-
tial Filter

Actual Classified
class 0 1 2 3

0 34 2 7 7
1 2 35 13 0
2 1 11 37 1
3 9 0 0 41

4.8 Results of a 4 class Problem Using Features from a 7x 7 Low-pass Spatial Frequency

Filter in add-on testing

This section reports the results of using add-on testing of the 49 Fourier coefficients

from the 7x7 spatial frequency filter. A recognition rate of 68.7% was achieved. This com-

pares favorably to the results of the figure-of-merit features because three of the features

of the best combination are the same. It is interesting to note that the first feature, 198,

was the best feature in both figure-of-merit and this test. Feature 198 tested better with

another feature that was not in the top 10 figure of merit features; however, the subsequent

combinations returned a lower test error. This supports using figure-of-merit vs straight

add-on. Table 4.13 lists the results.

4.9 Results of a 4-class Problem Using Magnitude and Phase Features

The next set of features used for classification were based on the magnitude and

phase of the Fourier Transform. Specifically, the magnitude and phase of the coefficients

resulting from using a 7 x 7 spatial frequency filter. In addition, a feature set of only the

imaginary components resulting from using a 7x7 spatial frequency filter was tested.

4-11

so

40

30

20 Trainin Xfo

10 I- -

0 5 10 15 20 25 30 35 40 45
0 of Iaskawe

Figure 4.7 MLP Test Error vs Number of Features From The Lower 3 Harmonics

Table 4.13 Best combinations of 49 features from the 7x7 spatial frequency filter and the
resulting MLP test error

Feature % Error(testing) Rmserr(testing) % Error(training)
198 54.5 .48 50.2

198,260 44.5 .45 41
198,260,241 38 .39 42

198,260,241,243 34.5 .36 25.5
198,260.241,243,223 31.3 .35 22

4.9.1 Results of a 4-class Problem Using Magnitude and Phase. This particular

set of features included both the magnitude terms and the phase terms. A total of 49

features were used for this experiment. Again, for the multilayer perceptron, only one

parameter was changed and that was the number of hidden nodes. A test was done with

50, 100, and 200 hidden nodes to see if the number of hidden nodes had any effect. For the

knn classifier the only parameter changed was the number of k neighbors. Four different

neighbors were used, they were 1, 3, 5, and 7.

Table 4.14 and Table 4.15 show the results of this group of classification testing

using the multilayer perceptron. The best error rate for this set of features was 46% for

100 hidden nodes using the multilayer perceptron and 41.5% using the 1-nn. Table 4.16

4-12

and Table 4.17 show the results of this group of classification testing. Each confusion

matrix corresponds to the best recognition rate.

Table 4.14 MLP test results using 49 features from the magnitude and phase of the 7 x 7
low-pass spatial filter

Hidden Nodes % Error(testing) Rmserr(testing) % Error(training)
50 50 .41 22
100 46 .4 21
200 47 .44 12

Table 4.15 Confusion matrix for magnitude and phase using 100 hidden nodes in the
multilayer perceptron

Actual Classified
class 0 1 2 3

0 24 5 1 20
1 2 35 6 7
2 3 26 17 4
3 11 6 2 31

Table 4.16 K-nn test results using magnitude and phase features from the coefficients
resulting from a 7 x 7 low-pass spatial frequency filter

k % Error (testing) Rmserr (testing)
1 41.5 .456
3 45.5 .395
5 46.5 .374
7 42.5 .369

4.9.2 Results of 4-class Problem Using Phase Features Only. The next set of

features were based only on the phase information of the 7x7 low pass spatial frequency

filter. The feature set consisted of 24 terms per sample. The knn performed better than

the multilayer perceptron. The top recognition rate of 62.0% occurred with 7 nearest

neighbors. This is the first experiment that shows a better recognition rate for greater

than 1 nearest neighbors, in this case 7 nearest neighbors achieved the lowest test error.

4-13

Table 4.17 Confusion matrix for magnitude and phase using a 1-nn classifier

Actual Classified
class 0 1 2 3

0 26 6 3 15
1 3 36 8 3
2 4 16 28 2
3 17 1 5 27

Tables 4.18 and 4.20 show the results of each classifier testing. Tables 4.19 and 4.21 lists

the confusion matrices for the best recognition rates. The phase contains most of the

information, yet it did not support very separable features.

Table 4.18 MLP Test Results Using 24 Features From the Phase of the 7x7 Low-pass
Spatial Filter

Hidden Nodes % Error(testing) Rmserr(testing) % Error(training)
50 71 .44 58
100 60 .43 50
200 58 .44 40

Table 4.19 Confusion matrix for mlp with 200 using phase only features

Actual Classified
class 0 1 2 3

0 36 1 7 6
1 23 15 10 2

2 16 9 21 4
3 23 6 10 11

4-14

Table 4.20 K-nn Test Results Using Phase Features From the Coefficients Resulting From
a 7 x 7 Low-pass Spatial Frequency Filter

k % Error (testing) Rmserr (testing)
1 42.5 .461
3 39.5 .377
5 40.5 .357
7 38.0 .354

Table 4.21 Confusion matrix for 7-nn using phase phase only features

Actual Classified
class 0 1 2 3

0 45 0 1 4
1 6 24 16 4
2 9 10 28 3
3 16 5 2 27

4.9.3 Results of 4-class Problem Using Magnitude Features Only. The next set of

features were based only on the magnitude information. The knn performed much better

than the multilayer perceptron. The top recognition rate of 59.5% occurred with 1 nearest

neighbor. Both the multilayer perceptron and knn classified achieved similar classification

results. Tables 4.22 and 4.24 show the results of each classifier testing. Tables 4.23 and

4.25 lists the confusion matrices for the best recognition rates.

Table 4.22 MLP test results using 25 features from the magnitude of the 7x7 low-pass
spatial frequency filter

Hidden Nodes % Error(testing) Rmserr(testing) % Error(training)
50 55 .42 19
100 42 .40 14
200 43 .42 12

4-15

Table 4.23 Confusion matrix for magnitude only using 100 hidden nodes in the mlp

Actual Classified
class 0 1 2 3

0 30 3 2 15
1 6 23 15 6
2 7 11 28 4
3 9 3 3 35

Table 4.24 K-nn test results using magnitude features from the coefficients resulting from
a 7 x 7 low-pass spatial frequency filter

k % Error (testing) Rmserr (testing)
1 40.5 .466
3 44.5 .381
5 40.5 .380
7 46.5.0 .388

Table 4.25 Confusion matrix for magnitude features using a 5-nn classifier

Actual Classified
class 0 1 2 3

0 26 6 3 15
1 3 36 8 3
2 4 16 28 2
3 17 1 5 27

4-16

4.10 Results of 4-class Problem Using Imaginary Components Only

The next set of features were based only on the phase information. The knn pe-

formed much better than the multilayer perceptron. The top recognition rate of 59%

occurred with 200 hidden nodes in the multilayer perceptron. Again, both the multilayer

perceptron and knn classified achieved similar classification results. The results are also

similar to the results of the phase only features. Tables 4.26 and 4.29 show the results

of each classifier testing. Tables 4.27 and 4.28 lists the confusion matrices for the best

recognition rates.

Table 4.26 MLP Test Results Using 24 Features From the Imaginary Components of the
7 x 7 Low-pass Spatial Filter

Hidden Nodes % Error(testing) Rmserr(testing) % Error(training)

50 42 .39 10
100 43 .41 9
200 41 .42 10

Table 4.27 Confusion matrix for imaginary components only using mlp

Actual Classified
class 0 1 2 3

0 38 1 2 9
1 7 25 13 5
2 8 11 25 6
3 13 2 5 30

Table 4.28 K-nn Test Results Using Imaginary Components From the Coefficients Re-
sulting From a 7x 7 Low-pass Spatial Frequency Filter

k % Error (testing) Rmserr (testing)

1 44.0 .469
3 45.5 .413
5 44.0 .389

7 45.5 .393

4-17

Table 4.29 Confusion matrix for imaginary features using a 1-nn classifier

Actual Classified
class 0 1 2 3

0 25 2 17 6
1 2 22 25 1
2 1 7 41 1
3 17 2 7 24

4.11 Results of a 4-class Problem Using Combination of KLT Features

The final feature set developed was based on the Karhunen-Loeve Transform. In this

test, ten features resulting from KL transforming the original 441 Fourier features were

used in an add-on procedure. The best combination of five was kept as the feature set.

The results of this testing show that the features that made up the best combination were

the top five coefficients corresponding to the largest eigenvalues. These features represent

the orthogonal directions in the feature space with the most variance. Tables 4.30 and 4.31

show the results of each classifier testing. Tables 4.32 and 4.33 lists the confusion matrices

for the best recognition rates. The average recognition rate of 76.2% over three trails for

the multilayer perceptron is the best rate for any feature subset selected. By performing

the Karhunen-Loeve Transform on a set of correlated data, generated by calculating the

Fourier Transform, the new KL components are now uncorrelated (18). This improves

recognition performance. Figure 4.8 plots each data sample when the Karhunen-Loeve

Table 4.30 Best Combinations of Top 10 KLT Features and the Resulting MLP Test
Error

Feature % Error(testing) Rmserr(testing) % Error(training)
1 53 .46 64.8

1,2 45 .38 53.5
1,2,4 34.5 .35 42.3

1,2,4,5 28 .29 23.5
1,2,4,5,3 23.8 .28 19.33

transformation reduced the feature space to 2 dimensions. The patterns are well mixed

together for two dimensions and the resulting test error was 45%.

4-18

Table 4.31 K-nn Test Results Using 5 KLT Coefficients

k % Error (testing) Rmserr (testing)
1 33.5 .409
3 30.0 .329
5 26.0 .311
7 24.0 .301

Table 4.32 Confusion matrix for best combination of 5 KLT features using mlp (76.2%
accuracy)

Actual Classified
class 0 1 2 3

0 34 1 4 11
1 2 34 11 3
2 0 3 47 0
3 12 0 1 37

Table 4.33 Confusion matrix for best combination of 5 KLT features Using 7-nn classifier
(76% accuracy)

Actual Classified
class 0 1 2 3

0 41 4 4 1
1 1 34 15 0
2 1 2 47 0
3 15 1 4 30

4-19

20000

Iowa
15000

10000

x X #X

5000 ,,x do •

-5000 x 1A

-lowo x÷

-15000 7
-15000 .1ooo0 5000 0 5000 0o000

Figure 4.8 Patterns plotted for 2 dimensions of the KL transform

4.12 Images

Figure 4.9 shows a collection of commonly misclassified patterns. Many of the pat-

terns have some type of stray lines in the image or the word itself has characteristics of

cursive script. A step in analyzing why some patterns were correctly classified and why

some were not, may be to look at the reconstruction of the images with the features used

to classify them. In the following figures, two classes were analyzed. For each class, a

correctly classified pattern and a misclassified pattern were reconstructed from the lower

3 harmonics to see if any noticeable difference could be seen. It does not appear from just

a few images that there is any distinguishable difference. However, good reconstruction of

the image does not mean those features will be good for recognition.

4-20

Figure 4.9 Mis classified Patterns

X. X.'

.'.......

.~.....

Figure 4.11 Correctly classified pattern in class 0, reconstructed using the lower three
harmonics

4-21

Figure 4.12 Mis-classified pattern in class 0

Figure 4.13 Incorrectly classified pattern in class 0, reconstructed using the lower three
harmonics

S......................... .. . -..... . :•i~ : }:

.....,.
ýx ~:: :: ::::::::::::::: :

!! !i
Figure 4.14 Correctly classified pattern in class 3

4-22

Figure 4.15 Correctly classified pattern in class 3, reconstructed using the lower three
harmonics

Figure 4.16 Mis-classified pattern in class 3

Figure 4.17 Incorrectly classified pattern in class 3, reconstructed using the lower three
harmonics

4-23

4.19 Generalization of Recognition

What confidence can be placed on the results obtained? A good rule of thumb for

the design of a pattern recognition system is to use half or less of the data for training

(6). All the result obtained, used exactly half of the data for training and half for testing.

Another standard for the design of the system is to use on the order of ten times c,, where

ck = 2(K + 1) and K = the number of features (30). The best results were achieved using

5 KLT Fourier features, so in this case ch equals 12. This would require 120 patterns per

class for training. Only 50 patterns per class were used for training the system. Ideally,

more patterns are required for better generalization. The true error rate is estimated to

be in the range of 0.22 to 0.34 (19).

4.14 Conclusion

This chapter reported the results of testing several feature sets on both a 2-class and

4-class problem. Table 4.34 summarizes the results of each feature set used for the 4-class

problem.

Table 4.34 Summary of 4-class testing

Feature Set Recognition Rate (%) Classification

7x7 Spatial Filter 74.5 1-nn
Figure-of-Merit 73 mip

Magnitude and Phase 58.5 1-nn
Magnitude Only 59.5 1-nn

Phase Only 62 7-nn
Imaginary coefficients 59 mlp

Karhunen-Loeve 76.2 mlp

The 76.2% recognition rate using the Karhunen-Loeve transform of Fourier features

was the top rate. Three of the feature sets resulted in recognition rates of greater than

70%. Good recognition was achieved for figure-of-merit and Karhunen-Loeve features using

only 5 features. The high recognition rates indicate that Fourier Transform features are

valuable in recognizing handwritten words.

4-24

V. Conclusions

The purpose of this thesis was to examine the use of Fourier Transform coefficients

for the recognition of handwritten words. The pattern recognition problem consisted of

classifying four handwritten words, 'Buffalo', 'Vegas', 'Washington', 'City.' Based on the

success of using Fourier coefficients in the past for recognizing handwritten letters and

machine-typed words, the logical next step was to analyze the recognition capability of

Fourier coefficients of handwritten words. The analysis concentrated on searching for sub-

sets of features from the Fourier coefficients computed of the word images. Several feature

sets were generated to include using the coefficients from the 7x7 spatial frequency fil-

ter, figure-of-merit features, magnitude and phase, and Karhunen-Loeve features. Two

methods of classification were used, the multi-layer perceptron and the k-nearest neigh-

bor. LNKnet software provided the classification support and Khoros (14) provided image

processing support.

This effort was a first cut at the problem of recognizing handwritten words. A

more in-depth look at the Fourier coefficients was provided, such as the separability of

each individual feature and the role the magnitude and phase played. The figure-of-merit

feature set resulted in a 73% recognition rate. Using the magnitude and phase features

together resulted in a 58.5% recognition rate, while magnitude features alone resulted in

59.5% and phase alone resulted in 62% recognition. Using the standard lower 3 harmonics,

which had great success separating handwritten letters, produced a 74.5% recognition

rate. In addition, applying the Karhunen-Loeve transform to further search for features

with separability was examined. This resulted in the top performance of 76.2%. Other

methods of feature selection included the addon procedure used during classification. All

theses techniques were used in the attempt to pair down the infinite amount of feature

combination to find the best set of features for classification. The result was a sufficient

examination of Fourier coefficients used alone as features.

The results indicate that Fourier coefficients are beneficial to some degree in be-

ing able to classify handwritten words. The best recognition performance of 76.2% was

achieved when the Karhunen-Loeve transform was computed on the Fourier coefficients.

The variability in the handwritten word is difficult for the Fourier coefficients to overcome.

5-1

Although some recognition ability does remain, recognizing handwritten words requires

more than just feature sets based on Fourier coefficients.

This leads to recommendations for future research in classifying handwritten words.

The first recommendation is to incorporate a feedback mechanism into the classification

process. The Fourier coefficients provide a good initial feature set for classification and can

achieve 76.2% recognition, but more information is required for commercial applications.

Using a window across the image to compute Fourier coefficients may be a way to gather

more information to feed back into the classifier. The second recommendation is to fuse

the results of two or more independent classifiers. Probabilities of samples being assigned

to a certain class are weighted and a voting scheme could be used.

5-2

Appendix A. A LNKnet Helper

This appendix is a quick tutorial on the the program LNKnet. To start the pro-

gram from your directory, put the following statement in the .cshrc file: set path=(path

/home/cub7/LNKnet/bin). Now you should be set to call LNKnet. Do this by typing

'LNKnet' on the command line. A window will appear which is titled, "Experimental

Control." If you have not obtained a copy of the help manual, do so, because it explains

the various control parameters. The following tips will help.

"* Call LNKnet from the directory that is one directory above where the data you want

to use is located. For example, if you have the data files called xor.train and xor.test

located in the directory called Inknet/data, then go to the lnknet directory on the

command line and call up LNKnet.

"* The top of the experimental control lists the parameter ALGORITHM. This allows

you to choose a classification method.

"* Directly below ALGORITHM is Algorithm Params... in which you can define the

specific parameters of the classification technique.

"* Under FILE NAMES: Just enter a name for Exper. Name and hit return and the

other file names will be generated automatically. For Exper. Path enter 'data/'

followed by a carriage return if the data is set up the same way as described in the

first hint. All the files generated when the program runs will be put in the directory

designated by the Exper. Path.

"* For STANDARD DATA SET, enter NONE, unless you want to use the standard

data sets found in the home/cub7/LNKnet directory.

"* For Data Path, enter the directory the data is found in ie., 'data' for the example

above. For data file preiix enter 'xor' for the example above. It will search for

xor.train and xor.test. The number of features and output classes is obvious.

"* Then go to the left side of the experimental control and enter the number of training

patterns and test patterns. Click on the box next to the desired function whether it

be train, test on training data, eval, or test.

A-1

"* At this point hit START and you are on your way. The results will be outputted to

the command tool and also to the log file.

"* When entering parameters, be sure to hit a carriage return. The following is a script

file which will run LNKnet's multilayer perceptron, testing after each training epoch.

Depending on the particular problem you have, several parameters will need to be

changed. The man pages for LNKnet list all the parameters.

"* LNKnet needs a certain format for the data file. Separate each pattern by a carriage

return and separate each feature by a space. To indicate the class of each pattern,

place an integer before the first feature of each pattern. For example: 0 24.3 35.6

..... cr. The first class begins with a zero and so class 2 would begin with a 1 and so

on.

That is a quick summary of the basics you will need to run the program. Most

run-time errors occur because the program can't find the data files or the data files are in

the wrong format.

When LNKnet is executed, it runs a series of script files which is puts in the log

file. These script files can be edited to fit your desires. For example if you want to test

after each epoch of training, generate a script file to do this. The following script file is an

example of how this is done.

X!/bin/csh

ftrs/2cO3mlp.run

set loc='pvd'

set epochs-left a 25

(time mlp \

-train -create -pathexp $loc -farror 2c03mlp. err. train -fparam 2c03mlp.param\

-fpid 2cO3mlp.pid -pathdata /tmp..mnt/home/havkeye7/gshartle/lnknet/ftrs/\

-finput test.train -fdescribe test.train.defaults\

-nraw 10 -npatterns 18 -normalize -fnorm teot.norm. simple\

-cross.valid 0 -fcross.valid teat.train.cv -random -need 0\

-priorx.npatterns 18 -debug 0 -verbose 3 -verror 2 -nodes 10,50,2\

-alpha 0 -etta 0.1 -epailon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2\

-hfunction 0 -ofunction 0 -para 1 -criterion 0 -epochs 1 -batch 1.1.0\

It nn.tee -h 2cO3mlp.log

0 teat after first epoch

A-2

(time alp -create

-pathexp $loc -terror 2c031lp. err test -f perem 2c03mlp .peram\

-414d 2cO3mlp .pid -pathdata /tmp..ant/hose/havkeye7/gshartle/lnkaet/ftrs\

-fiaput test-test -fdoesribe tent.test.detaults -3raw 10\

-apattemns 18 -normalize -uorm test.noru.siuple -cross-.valid 0'.

-tcress..valid test.test.cv -random -seed 0 -prlors..npatterns I8\

-debog; 0 -verbose 3 -verror 2 -nodes 10,50.2 -alpha 0.7 -etta 0.05\

-epsilon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2 -hfunction O\

-ofaaction, 0 -perem 1 -criterion 0 -epochs 25 -batch 1.1.0)

I& aw-too, -h -a 2cO3flp.log

a epochs-.loft -a

while(Sopochs..left > 1)

echo Sepochs-lftt

Strain each remaining epoch

(time alp \

-train -pathexp $loc -terror 2cO3mlp .err .train -tparam 2cO3alp .param\

-414d 2cO3mlp .pid -pathdata /tmp..mnt/hone/haukeye7/gsbartle/1-knet/ttrs/\

-tinput test.train -fdoscribe test.train.defaulta\

-nra. 10 -npatterns 18 -normalize -fnorm a. norm. simplo\

-cross-.valid 0 -fcroossvalid tost.trajn.cv -random -seed O\

-priors..npatterns 18 -debug 0 -verbose 3 -verror 2 -nodes 10,50,2\

-alpha 0 -otta 0.1 -epsilon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2\

-hfunction 0 -ofunction 0 -param I -criterion 0 -epochs I -batch 1.1,0\

It& an-too -h -a 2cO3mlp. log

0 test after each epoch of training

(time alp \

-patheip $loc -terror 2cO3mlp. err .test -fperam 2cO3mlp .paren\

-f p14 2cO3mlp .pid -pathdata /tmp..mnt/home/havkeye7/gshartle/lnknet/ftrs\

-f input test.test -fdescribe test.test.defaults -nraw 10\

-upatterns 18 -normalize -fnorm test norm simple -cross-.valid O\

-fcross..valid test.test.cv -random -seed 0 -priors..npatterns 18\

-debug 0 -verbose 3 -verror 2 -nodes 10,50,2 -alpha 0.7 -etta 0.06\

-epsilon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2 -hi unct ion O\

-ofunction 0 -peram 1 -criterion 0 -epochs 25 -batch 1.1.0)

14 an-too -h -a 2cO3mlp.log

a epochs-left -Il

end

*train to get any remainder in the number of epochs

(time alp \

-train -pathexp Sloc -terror 2cO3mlp .err, tra~in -fparam 2cO3mlp .param\

-fpid 2cO3mlp .pid -patbdata /tmp..mnt/home/havkeye7/gshertle/lnknet/ftrs/\

-f input test.train -fdescribe tost.train.defaulte\

A-3

-&awe 10 -apatterns 18 -normalize -finer. test.noru. "up0\

-cross-valid 0 -fcross..valid test. trsaim.cv -random -seed O\

-priors..npatterns 18 -debug 0 -verbose 3 -verror 2 -node" 10,50,2\

-alpha 0 -etta 0.1 -epsilon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2\

-htunction 0 -ofunction 0 -pars. 1 -criterion 0 -epochs 1 -batch 1,1,0\

I& an~te. -h -a 2cO3alp.log

* do final test

(time alp \
-patheip Sloc -terror 2c031p.err.test -tperaa 2cO3alp.pares\

-tpid 2cO3vap. pid -pathdata /tup..unt/home/hawkeye7/gshartle/lnknet/ftrs\

-f input test~test -fdeacribe test.toot.d~faults -araw 10\

-npatterns 18 -normalize -tinor. test. norm. simple -cross-.valid O\

-fcross..valid tost.test.cv -random -seed 0 -priors..npatterns 18\

-debug 0 -verbose 3 -verror 2 -nodes 10,50,2 -alpha 0.7 -etta 0.05\

-epsilon 0.1 -kappa 0.01 -decay 0 -tolerance 0.2 -htunction O\

-otunction 0 -pars. 1 -criterion 0 -epochs 25 -batch 1,*1,0)\

I& anntee -h -a 2cO3alp.log

8 plot results of Testing, change terror to plot training

plot-perr -patheip Sloc -terror 2cO3mlp.err.text -t plot 2cO3ulp.perr plot\

-autoscale -xmm 0 -xmax 10000 -yamu 0 -yawI 100 -instep 1000 -ystep 10\

-line-.type 1 -trials 36\

-title *'Uorm-Simple Iet:10,S0,2 Step:0.1 Momen:0.6"

echo "current directory:" >> 2cO3nlp.log

echo $loc >> 2c03mlp.log

plot rms error

plot..raaerr -pathexp Sloc -terror 2cO3alp. err. test -tplot 2cO3mlp. rmsezr.plot\

-aiatoscale -xmin 0 -xmax 10000 -yami 0 -ymax 100 -%nstep 1000 -ystep 10\

-line-.type 1 -trials 75\

-title "Norm:Sinple Net:10,60,2 Step:0.1 Moznen:0.6"'

echo "current directory:" >> 2cO3mlp.log

echo $loc >> 2cO3mlp.log

A-4

Appendix B. Sourcecode

B.1 Scriptfiles

* Progream to find selected cities in the cd rom

*Ilbinlcsh -1

seteav HIPSDIR /cdron/trainlcities/bd

set outdir a SHOME/cedarldateitrain

set C a 0

set W a 0

set V a 0

unalias is

cd $HIPSDIR

touch -/tomp/hips junk

foreach j (bd*)

cd Sj

echo Si

net 1 - 'is -a bds..'

foreach i ($1

echo Si

- /cedar /bin/deltau < $HIPSDIR/tj/$i I /cedar /bin/hdingo Ipep, Truth > -/temp/junk.hips

sot a ='is -/terp/junk.hips'

set yn ='grep 'Image' $a I avk VI [vv3CE*3][GgJ [AaJ ESsJ/ (print .1y")''
if (Syn - "Y") then

l/cedsrlbin/deltau < Si I l/cedar/binlhips2sun > $outdir/i/$i;

not V a (echo "$V 1 + P" I dc')

echo 2."" >>Soutdirltemp/classe.

set koagrep, Image $a'

echo 5kV $ i"" "tally * S." class - 1",)>Soutdir/temp/tally

else

endif

set yn "n

set yn - 'grep ' Image' $a 1 awk '/Wv] [A&] [S93 [Nh] [IiJ [Nn] EGg) ETtj [Ca) [NnJI (print "y"}'
if ($yn -= "Y") then

-/codar/bin/deltau < Ui I -/codar/binlhips2sun > Soutdir/2I$i;

set W a ('echo "SW 1 + P"1 I dc')

echo 3."" >>$outdir/teap/classes

set k*grep Image $a'

echo $k" ,$i'. "tally = "SW, class - 2">>toutdirltemp/tally

B-i

else

endif

got yn * "a"

set yn a 'grep 'Ima~ge' $a I auk '/[cC) (Ii) TtM[YyJ/ (print 11y")"

if ($yn arn "y") then

-/cedar/bin/deltau c $i I -/cedar/bia/hips2oun > SoutdirI3I$i;

Set C a ('echo "$C 1 + p11 I dc')

echo III"" >>outdir/temp/classes

set k-'grep Image $a'

echo $V" "8$" "tally a "S$C, 1. class =3")>)Soutdir/temp/tally

else

endif

get yf "l

end

cd

end

S Program to preprocess the image

3'/binlcsh -f

Sf oreach i (b*.[O-9J)

S Window the binarized image and do the dft

* convert the raster file of the image to viff format,

do a histogram strech and threshold.

tiff2viff -i $i -o /usr/tmp/two -v 0

Orast2viff -i $i -o /usr/tmp/one -p 0

Sputimage -i /usr/tmp/one -update 2

#vhstr -i /usr/tmp/one -o Iusr/tmp/two -p 0

vthresh -i /usr/tmp/tvo -o /usr/tmp/three -1 235 -v 255

Sputimage -i /usr/tmp/three -update 2

viff2rast -i /usr/tap/three -o test -p 0

rast2viff -i test -o /usr/tmp/rast2HkAal4313 -p 0

viff2pbm -i /usr/tmp/rast2HAAal43l3 -o $i.asc -r 0

B-2

convert the binarixed image back to auc.

* crop the image, and do a 41 t

tviff2pba -i Iusrltmplthxee -o $i.asc -r 0

*r/binlcrop $i.aac Si~crop aux

'/binldftt.all Si. aec bin..win..ftrIs/i.&llpbv

*'/bin/dft..all Si. crop bIn..vin..ftrs/$i .allpbw

rm Si.asc

Oru $i crop

I got the cropped dimensions from the .aux file

#sot dims a 'head -2 aux'

#echo $dims Ci), Sdims [2), $ dims [3). *dims [4)

Window the original image end do the dft to get the features

crop the original image

#putimage -i /usr/tmp/one -update 2

#yoxtract -i /usr/tnp/one -o /usr/tinp/cut -z Sdims[2J -y $dimm () -w $dim. 3] -bi $dimst4]

*putimage -i /usr/tmp/cut -update 2

8 convert from viff2pbm. run the dft routine to get the features from the umbinarized images

#viff2pbm -i /usr/tmp/cut -o $i.asc -r 0

V'/bin/dft..all *i-asc vin-t.trs/Si.allpw

#rm $i.asc

end

* Program to do addon testing

fl/bin/csh -f

echo ""> result-mlp-49

echo ""> result..mlp49-avgtest

echo >" result..mlp-49..avgtrain

echo "> result..mlp-49.avgrmstest

B-3

echo >" result-alp-49-avgrmtra~in

echo >" feature

echo features" "triale 'l"error..test" %~error -train" "-rus~err..temt" "rus..err-trainl "mimses >> result..alp..49

echo "" >> result-alp-49

get bestleaturt a 'echo '0 0 0 0 0 Pt

foreach j (1 2 3 4 5)

if ($j !a 1) then

met beat a 'aph '{print $1}' feature'

echo $best

set k - 'echo "Si 1 p", I dc'

while($k >0)

met bemtfeature(SkJ $ bestE$k)

4 k --I

end

endif

echo Sbestfeature

echo " " test-.features

foreach 1 (221 222 220 199 243 201 241)

echo $i,$j

if (Sestfeature~±J !a $i U& $bestfoature[2J $. i

&& $bestfeature[3] $i && Sbestfeature[4J $ i

kk $bestfoature[SJ $ i) then

echo "" >> result..mlp-49

set avgtest - 0

set avgtrain a0

set avgrmutest a0

set avgrmstrain = 0

B-4

met trial - I

got..each..teaturo 4coempu .noruid foaftroot 400 441 Si

rand4c fooftrset test.train test test 400 $j list

11Dnknetlt~troIwhooshS .run Sj

* sot up a file called error to write all the results of testing to.

set x a 'sed a/"("IP("/ 2cO3mlp.logI grep Overall I auk I{print84,$61''

*soet x1 'sod a/"(/'('I/ 2c03mlp.logI grep Overall I awk '{printS4.S61'

echo " > error

echo $#x >> error

echo $x >> error

got the lowest error

l/bin/geterror

met f 'auk '{print, UP} feature'

set xI awk I{print $01' error-.report'

met yi awk '{print $01' miuclasslist'

set ZI ' echo S*lyl

echo St >> reuult-mlp..49

echo $i" 'Itrial" "Sxl~lJ" '-$x1E2)" "Sxl[3)" 'Szl(4J" >>) result-m.lp..49

#echo $i' "Strial., "IIlx[]" IISxl(2J" " >> result..mlp_49

while(Szl > 0)

echo " "Syl [SzlJ >> result..mlp..49

4 Z1 -- 1

end

B-5

rand4c foaftroet test.train teut~test 400 $j list

-/lmnknt/ftrs/whoosh3ru .rj

set xm'sod u/'("/"('/ 2c031lp.logI grep Overall I awk l{print$4,$61''

#set z2 *'sed sI"("/"("/ 2c031lp.logI grep Overall I awk '{print$4.06}'

echo " error

echo S61 >> error

echo $x >> error

sot trial a 2

- /binlgeterror

set x2 awk '{print $0)1 error-.report'

set y2 avak '(print $0}' misclasslist'

set z2 a echo Sly2'

echo $f >), rosult..ulp-49

echo $i" "$trial, "WC12El)"W5232J' "Wz[3J" "U2[41" > > result-m.lp-.49

#echo Si" 'Itrial" "WxEIIII "W[232 >> result..alp..49

while($z2 > 0)

echo " "Sy2E$z2) >> rosult..alp-49

* z2 -Il

end

rand4c iomftruet test-train teut~test 400 $j list

-/lnknet/ftru/vhoosh3 .run $j

set xx'.ed s/I("I(I2cO3mlp.logI prep, Overall I awk '{printS4,$6}I'
set x3o'sed PI"("I(I2cO3mlp.logI prep Overall I awk '{printS4.S6}''

echo 11" ý, error

echo S~x >> error

B-6

echo S:),> error

set trial a 3

-/binl get eror

sot z3 as ek '{prizit $0)' error..report'

sot y3 I awk (print $0)l misclawalist'

sot z3 ' echo $Sy 3 '

echo $f >), result..ulp-49

echo W± 'Itrial' "W:3(]" "$x3[23" "W:313" "$x3[43" > > result-alp-.49

#echo Si" "Strial" "WE3(1" I'W[3(2" " >> result..alp..49

while(8z3 > 0)

echo " "SY3(8z3J >> result-m.lp..49

* z3 --1

end

sot avgteut m 'echo "2 k"I $x1[1J 6:2(1 8x3[1)".+ 3 / p"Ildc'

set engtrain a'echo "12 k"l 8:1(2) $x2[21 8z3(2J"++ 3 / p"Ildc'

met avgrmatest a 'echo "2 k"l 8:1(3) $z2[3] 8:3(3)"'. 3 /p"Idc'

set avgrmstrain a 'echo "12 V" 8:1() 0:2143 $x3(4]"++ 3 Ip'fIdc'

echo >>) result-mlp-49

echo ' >> result..mlp..49

echo " "avg" "$avgtestl" "$avgtrain" "Wagrastest" "Savgrmstrain >> result-nlp..49

echo >>) result..mlp..49

echo >" > result..mlp..49

echo Si"' llavgtest >> result-mlp-49.avgtest

echo Si" "Savgtrau >)> result..ulp.49..avgtrain

echo $i" "$avgrmstest >> result-inlp..49-avgrustest

echo Si"l "$avgrmstrain >> result -alp-49.avgrmstra~in

echo $ill "Savgtest >> test-fetures

ru 2c03alp.log

rm 2c03alp.arr.test

endif

end

B-7

"lbin•sort..best .feature

end

0 Program to find the misclassified samples

9!/bin/csh -f

S read in the misclassified samples

set number a 'auk '{print $01 miss'

set desired = 'auk '{print $3}' miss'

set classified a 'awk '{print $50 mis'

* write them to a file

echo > misas

echo $*number >> nissi

echo $number >> missx

echo $desired >> zsissl

echo $classified >> missl

0 it calls the program miss-patternm to get the missed patterns

and find the filename of the pattern so it can display it.

miss-patterns

Sset patterns = 'auk '{print $1)' misclasslist'

f foreach i ($patterrs)

*rast2viff -i •./../cedar/data/train/all.pattorns/$i -o /asr/tap/Si -p 0

Sputimage -i /usr/tap/$i -update 2

Send

B-8

B.2 C code

Compute the 2dft of

a NxM array of values

This program reads an ascii file

that has been generated by

converting a raster file to pbm in

khorus.

It reads every third value in the

array to account for the fact that

the conversion was greyscale.

#include <stdio.h>
#Include <math.h>

main (argc. argv)

int argc;

char *argvo:
{

/**** true-height is the real array dim in y space

true.width is the real array dim in x space *******/

int true-height, true-width, ORDER, FILTER,x,y4Ji,k,I.waste2;

float high. across, tempk, templ. cossin.Aerm, norm.dc-term;

float coeffl2l][21];

int city-name[1000]1000];:
int data[1000][1000], junk;
char waste;

FILE *ingle, *out-lle;
if ((in-file=fopen(argv[l], "r"))==NULL)
printf("can't open\n");

out-fle = fopen(argv[2],'w");

/** read header info ***/

fscanf (in.flle,"%s", &waste);

fscanf (inJile,"%d", &true-width);
printf(" %d ",true-width);

fscanf (in-file,"'d", &true-height);
printf(" %d ",true-height);

if (true-width> 1000)
printf("out of bounds\n");

B-9

if (true.Jieight> 1000)
printf(I"out of bounds");

fscanf (in-fle,"U", &waste2);

/* read in the matrix of values, every third value **

for (x=0; x<true-height; x++)

for (y=O; y<true-width; y++)

fscauiI (in-.file,"%d %d %d", &datalx]lyI, &junk, &junk);

city-.naxne~xI[yj=data jx][y];

high =2*M..PI/(true-height);

across = 2*M2'l/(true..width);

/**** FILTER = ORDER*2+1 where order is the number of harmonics ***/I

ORDER = 10;
FILTER = ORDER*2+1;,

for (k=0; k<FILTER, k++)
for (1=0; 1<FILTER; 1++)

coeff~kJ!11 = 0.0:.

for (k0O; k<ORDER; k++)

for (1=0; 1<FILTER; 1++)

I
tempk =(k-ORDER)*high;

tempi (1-ORDER)*across;

for (i0O; i<true..height; i++)

for (j0O; j<c(true-width); j++)
I
cossin..erm = -i*tempk-j*templ;
coeffiki [11 += city..name[i][j] * cos(cossin..erm);
coeffl2o-k][11 += city-nazue[i][jl * sin(cossin..term).,

B-10

k =ORDER;

for (1=0; 1<ORDER; 1++)
I
tenapl = (I-ORDER)*across;

for 0=0; i<true.height; i++)
for 6j=0; j<truie..width; j++)

cossin..term = -j*templ;
coeffikilli += city naniei]j] * cos(cossin.±erm);
coefffk)120-1] += city-name~i]i] * sin(cossin.±erm);

dc..term = 0;
for 0=0; i<true-height; i++)
for 0j=0; j<true-width; j++)

print~lf(IAf~c-term);
coeffIORDERJI[ORDER] =dc..erm;

/s***s****sENERGY NORMALIZE ***********~

norm = 0.0;
for (k0O; k<FILTER; k++)

for (1=0; I<FILTER; 1++)
norm += coefljkjl[*coefflkltl];

norm = sqrt(norm);

for (k=0; k<FILTER, k++)
far (1=0; 1<FILTER; 1++)

coeffkj(11j coeffik][11/wrm;

/**********WRITE COEFFICIENTS TO FILE******4
for (k0O; k<FILTER; k++)
for (1=0; 1<FILTER; 1++)

fprintf(out..file,"%f \n" ,coefffk] [I]);

fclose(in~le);
fclose(out..file);

) **END MAIN **

B-11

Program: crop.c

Description: Crops a binarized image

#include <stdio.h>
#include <math.h>

main (argc, argv)
int argc;
char *argvfl;

/** true-height is the real array dim in y space**
true-.width is the real array dim in x space ******e*I

int true-.height, true-width, ORDER, FILTER~x,y~ij,k,1,waste2;
jut cityaiame[1000] [1000];

jut data[1000]I1000], junk;
jut top, bottom, left-.side, right side,width. height-,
int count=0, val;

char waste[5];

FILE *in..file. *out-file, *out-file2:,
if ((inhfle=fopen(argv[Jl, 1Ir"))==NULL)
printf('can't open\n");

out-file = fopen(argv[2],1Iv");
out-file2 = fopen(argv[3J,9Iw");

fscanf (in-fl~e,'%s", waste);
fscanf (in-.file,"%d, &true..width);
printf(" %d ",true..width);
fscanf (in..file,"%d6 , &true..height);
print f(" %d ",trueiieight);

if (true..width> 1000)
printfQ'lout of bounds\nu1;

if (trueiieight> 1000)

printf("lout of bounds");
fscanf (iu-file,"%d", &waste2);

/** read in the matrix of values, every third value **

top = -1;
for (x0O; x<trueiieight; x++)

B-12

for (y=O; y<true-width; y++)

fscanf (infile,"d %d %d", &data~xJfy]. &junkc. &junk);

city..nametxl [yJ=data[xJ[yJ;
if ((top == -1) && (city..name~xJJy] == 0) && (y $60))

top = X

left-.side = -1;
for (y=l; (y < true-width) && (Ieft-side==-1): y++)

for (x=top; x < true-height; x++)
if (city..namefx]fy] == 0)

{left-side = y; break;)
bottom = -1;
for (x=true..height-1; (x > top) && (bottom == -1); x--)

for (y=Ieft-side; y < true-width ; y++)
if (city-nameix][yJ == 0)

{bottom=x; break;)

right-side = -1;
for (y=true-width-1; (y > left-side) && (right-side == -1); y--)

for (x=top: x < bottom; x++)
if (city-aiame[xi[y] == 0)

{right-side=y: break;}

width =right-.side - left-saide + 1,
height =bottom - top + 1;
fprintf(out-file,Xas\z%d %(d\n~d\n",waste, width, height,waste2);
fprintf(outJfie2,'%d %d %d Xd ,top,left-side,width,height);
for (x=top~x~bottom;x++)

for (y=left-side; y:5right..side;y++)

I
val = city-namekxJ[y];
fprintf(out-file,"%3d %3d %3d ",val, val, val):
if (++count == 4)

fprintf('\n');
count = 0;

fclose(in-jile);
fclose(out-file);

#include <stdio.h>
#define SQR(x) (x)*(x)

B-13

* normalize: normalize input features based on nsamples or (nsamples-l)
, samples
,

* Inputs:

* data: nsamples x dim array of data-each row is a sample
* nsamples: number of training samples
* dim: number of elements in each training vector (before augmenting)

* Output (returned):
* normal: copy of data with all features in all samples normalized
,/

main(argc, argv)
int argc;
char *argvfl;
{

/* Matrix normalize(Matrix data, int nsamples. int dim) */
{

int i, jnum-patterns, num-features;
float sum. sumsq, data[1200][12001, mean[12001, std[1200];
FILE *infile, *outfile;

/* Vector mean, std; ./

if (argc i 5)

1
fprintf(stderr, "Xs: usage: %s <jnf ile> <outfile> <number of classes> <vectors per class>

< number of features > < number of patterns>\n", argv[O], argv[O]);
exit(l);

}

if ((infile = fopen(argv[l], "r")) == NULL)
{
printf(stderr, "Couldn't open file list Xs\n", argv[1]);
exit(O);

I
if ((outfile = fopen(argv[2]. "I")) == NULL)
{
printf(stderr, "Couldn't open output file %s\n", argv[2]);
exit(O);

num.features atoi(argv[3]);
num-patterns = atoi(argv[4]);

for(i=O; i < num.patterns; i++)
for(j=0: j< num-features; j++)

fscanf(infile,"1f ",&data[ij [j]);

B-14

/s mean = v..alloc(dun);
std = v..aloc(dim); */

/. Compute mean and std vector: *
for (j0O; j < numifeatares; j++)

su{ 00
sums = 0.0:

for 0=0; i < num..patterns; i++)

sum += datafi][jJ;
sumsq += SQR(datali]U]);

meanbj] = sum / num-patterus;
stdoj] = (sumsq - (SQR(sumn) / num..patterns))/(num..patterns-1);

/* Normalize and augment all .ta samples: *
for (i0O; i < num..patterus. i++)

I
if (i $6 0) fprintf(outfile,I\n");

for (j0O; j < num-ieatures; j++)
f

datalilljl = (datalifjbJ - ineanbj) / stdb];
fprintf(outfile,'If l,data[i] Li);

/* free(mean);
free(std), *

Program: separatexc

Description: Assigns a figure of merit
for each dimension in
n-dimensional feature space

#include <stdio.h>

B-15

#include <muath.h>
#include "jkmacros~h

main(argc. axgv)
int argc:
char *argvfl;

jut ij.k:
jut num..classes, length, vectors..per..claas. numfeatures, num..patterns;
int feature..nuxnber[5001;
Bloat class -mean[500]fSOOJclass..variancej500]f500J.templ ,texnp2;
float newdata..matrix[50O115O001.croes.clasa..mean150OI;
float acroass-class..vvriance(5001. mean..ofvar[W00]
float var..ofmneans[S00]. fom-ordered..vector[500] .fom 1500];.
FILE *infile. soutfile;

if (argc * 7

{
fprintf(stderr. "%s: usage: %s <jul ile> (outfile> <number of classes> <vectors per class>

< number of features > < number of patterus>\n', argv[0], argv[01);
exit~l);

I

:f ((infile = fopen(argvf 1], 'Ir')) == NULL)

printf(stderr. "Couldn't open file list Wsn". argv[l]);
exit~o):

I
if ((outfile = fopen(argv[2], IV')) == NULL)
f
printf(stderr, "Couldn't open output file YWsn", argv[2]);
exit(O):

num-.classes = atoi(argv[3]);
vectors-per-class =atoi(argv[4]);
num-features =atoi(argv[5]);

num-patterns =atoi(argv[6]);

/* read in the data file so that the first column is class 1, feature
vector 1: the second column is feature vector 2 and so on. *

for(i1l; i < num-patteruc, i++)
for(j1l; j:5 numlfeatures; j++)

ficanf(infile,"Xf ",&newdata-matrixbl fi])

Calculate class-mean and class-.variance matrices

B-16

Loopli(num..classes)
Looplj(uum-features)

I
tempi = 0.0;
Looplk(vectors..per-class)

I
templ += newdata-mnatrixbl[k + ((i - 1) *vectors..per-class)];

claass-meanU] [i] = templ1/,Yctors..per-class:
1* print f("classniean %~n ",~a~ss..meanbj/iD);
fprintf(outlile, "% ~n ",class..meanUj]fiJ);

I

Loopli(num..classes)
Looplj(num-features)

I
temp2 = 0.0:
Loop lk(vectors..per-class)

temp2 += (newdata..matrixUj][k + ((i -1) *vectors..per..class)] -class..meanU][i]) *(new-

data-matrixbllk + ((i - 1) * vectors..per..class)] - class..meanbj][i])

I
class..varianceD] [i) = temp2/vectors..per..class;

/*printf("cl ass var %A~n", class..variancejjj[iJ);
fprintf(outlile, "%A~n ",class..variancebj Ii]); *

Calculate across-class-mzean and across-class-variance matrices

Loopli(num-features)

f
tempi = 0.0;
Looplj (num..classes)

tempi += class..mean[i][j];
across .class-mean [i] = tempi1/um-mclasses;

Loop1i (num-features)

temp2 = 0.0;
Looplj(num-classes)

temp2 += (class..mean~i][j] - across..class-mean[i]) (class-meanti]U] - across..class..mean[i]);
across..class-varianceli] = temp2/num..classes;

Calculate mean-of-var and var-of-mean vectors

B-17

Looplidnum~eatures)

epI =00

temp2 = 0.0;

Loop lj(uum-.casses)

tempi += class..variance[i]b]:.
temp2 += (claasaneaa[iIj]j - across-claat-mean[i]) *(class..mean[i][j] across..class..meanjij);

mean-of-varjij templ /nun-classes;
var-o..meaa~sli] =temp2/Tuim..classes;

Calculate (Figure of Merit) fom vector

Loopli(numlfeatures)
{ioni.ordered-vector[i] = fom[i] = va...of..means[i]/nraznof-var[i];

feature-number[iJ=i;

Sort

piksr2(nurnleatures,fom..ordered-vcctor, feature-.number);

Loopli(numlfeatures)
fprintf(outfile."Xd\t%f \n" ,featureaiumber[(nurnieatures+1)-i] fomsordered..vector[(numlfeatures+) -i]);

}/l*end main*/

Program: klt.c

Description: Program to calculate the eigenvector. of
a set of n-dimensional data

#include <stdio.h>
#include <math.h>
#include cstring.h>
#include 'jkmacroa .h

main(argc. argv)
jut argc:

B-18

char *argvo-,

I

FILE *inflle, *outfile, *outfije2;
int Iengthiaum..rain,nuxncodewords,num..classes, num..eigvectors;
imt ij,jNk,M~nrot;
Bloat **matrixo, *vectoro, **A, **A-trans. **u, **L, **v, *d, *average..temp, temp;
void free..vectoz(), fr-ee-matrixo,eigsrtojacobio;
char type-name[30J,avg-file[30], msg[30], msgl [30] filenamet4oljfile(401;

Iength~atoi(argv[31);
num-train=atoi(argv[4]);
num-eigvectors = atoi(argv[5]);

if (argc 96 7)

fprintf(stderr, "%a: usage: %a <inf ile> <outfile>\n11, argv[0J, argv[OJ);
exit(l);

if ((infile = fopen(argv[lJ, 1r11)) == NULL)

printf(stderr, "Couldn't open file list %9\n". argv[11);
exit(0);

I
if ((outfile = fopen(argv[21, "w")) == NULL)
I
printf(stderr. "Couldn't open output file %9\u", argv[j2)-.
exit(0):

I

printf(stderr, "Couldn't open output file Wsn", argv[6]);
exit(0);

/***Allocate memory***/

A = matrix(l,length,1.num~rain);
A.Arans = xnatrix(l1,num..rain,l,length);
average-temp = vector(l1,Iength);
L = matrix(1,nuum-rain,l,num-.train);
d = vector(l.num-train);
v = matrix(l,numj-rain,l,num..rain):

/*5**5* Initalize matrix and vectors ss/

f~or(j=1;:j5num..rainj++)

B-19

A,.transbJ[iJA[i] [j=average..±enp[iJ=0.0;

Printf("\nhe users being trained on are zn;

A* open-.read(argv[lJ. -2c03.train-); *
Loop li(num..train)

Looplj(length)

ficanffinlile, 11%f 1, &AUjJ~i]);

/******.*********Calculate average vector*****s****s**********

A* sprintf(avgifile, "avg..%s.dat", type-name); *
A* open..write(arg (4), avg..file); s
Loopli(length)

I
temp = 0.0;
Loop lj(nuxn.Arain)

f
temp += Ali]li;

average-temp[i] = temp/xomm.-train:

/**************aSubtract average vector*s*****s**s***e**********/

Looplj(num..train)
Loopli(length)

Aji]lj = A[i][j] - average-temp[i];

free..vector(average-temp, 1, length);

/*********a****Make transpose mti***es*****s*r

Looplj(num..train)
Loopli(length)

A-trans~j][i] ~]j

/s~s*s**********Marixmultiply A by itself***e**s********/

Loopli(num-train)
Looplj(num..train)

f
temp = 0.0;

B-20

Looplk(length)
temp = temp + A-trans~iik] AjkI~jJ;

Ljijili = temp;

free..atrix(A..trans, 1, num.-train, 1, length);

/ ***************Do Jacobi rotation and sort eigenstuff***s*s**s**'

jacobi(L, nunitrain, d, v, &urot);
eigsrt(d, v, num-train);
for (i=l; iknum..eigvectors, i4-+)

I printf(Ileigenvaluo %d in %i\nu',I,dfi]);
fprintf(outfile2,'Xr\n",dfi]);

A s*************.sF~ind eigenvectorss**s**.*********s******s**s*s**sq*

u = matrix(l, length, 1, num..train);
Loopi i(num-.train)

Looplj(length)
ulilli] = 0.0;

Loopli(numtrain)
LoopIj (num..ra~in)

Looplk(length)
ulk]i)l = vblfiI * A[kJ]jJ + ulk)[i];

/***a***.****Write file containing list of eigenvector names*****s****

/* sprintf(msg, "%s-train.out", type-.name); *

/* open..write(outflle, msg); */

A* sprintf(msgl, "elgenvector", type-.name); *
/* Luopli(num-eigvectors)

I

fprintf(outfile, "sn.file);

fclose(outfile); *

/* close this for selected eigenvectors *

Loopli(num..egvectors)

f
Looplj(length)

fpriutf(outfile, "%g\n", uU][i]);

fclose(outfile);

/* to print selected eigenfeatures

for(i=1: i < num-eigvectors; i++)

B.-21

for(frl;j < length; j++)
I if (i==1) fprintf(outfiie,"%g\n", uajffiJ).:

if (i==5) fprintf(outfile, "%g\n". u~j/fij);
if (i==9) 1printf(outfile,"%g\n", ubilil);

if (i==12) fprintf(outfile,"%g\n'. u~jJlij):
if (i==1 7) fprintf(outfile,"%g\n", ufi] (i);

if (i==7) fpzintf(outfile, "%g\n". ufjJlij);
if (i==3) fprintf(outfile,"%g\n". u~jJ~ij);
if (i==4) fprintf(outfile, "%g\n", ulfil);

if (i==3) fprintf(outfile,"%g\n"., uiJfiJ);
if (i==24) fprintf(outfile,"%g\n', uajJiJ); }.

free-natrix(A, 1, length, 1, num..train);
free..matrix(u, 1, length, 1, num..train);
free..matrix(A, 1,length,1,numirain);
free-matrix(L. 1 ,num..trainj1num..train);
free..matrix(v,1,num..train, 1 numlrain);
free-vector(d, 1 num..train);

I/* end main*/

Program: kltftrs.c

Description: Program which takes the
the original data set and multiplies the
eigenvectors calculated from klt.c to get
the new set of features

#include <stdio.h>

main(argc, argv)
int argc;,
char *argvo;

int i.j.k, num..eigenvec, num-features~num-.patterns;
float input [500] [5001, kltvec[500J [500], suxn[500] [500], feat;

FILE *infile, *infl~e2, *outffle;

if (argc 96 7)

fprintf(stderr, '19: usage: %a <iut ile> Coutf il.>\n", argv[0], argv[0]);
exit(l);

B-22

if ((infile =fopen(argv[11, er"l)) == NULL)

printf(stderr, "Couldn't open file list %s\n", argv[1]);
exit(O):.

if ((inhile2 = fopen(argv[21, "r,,)) ==NULL)
f
printf(stderr, "Couldn't open file list Wun", argv[21);
exit(O);

if ((outfile = fopen(argv[3], "*w")) == NULL)

printf(stderr, "Couldn't open output file Wsn". argv[3]);
exit(O);

num..eigenvec = atoi(argv[4]);
num-features = atoi(argv[51);
num..patterns = atoi(argv[6]);

/** read in the values of the kit matrix*/
for (i=O; i < num-eigenvec; i++)

for (j=O; j < nuxujfeatures; j++)
fscanf (inffle2, 'Ift", &kltvecji[j5]):

/e*read in the data set to be reduced*/
for (i=O; i < num-patterns; i++)

for (j=O; j < num..features; .j++)
fscanf (infile, "1%f 1, &inputli]U]);

/*establish the new set of featutres vector*/
for (i0O; i < num-patterns; i++)

for(j=O; j < num..eigenvec; j++)
sum[iJDJ=O.O;

4*multiply input and kit to get new features *~
for (i0O; i < num..patterns; i++)
for (k = 0, k < num-eigenvec; k++)

for (j0O; j < num-features; j++)

feat = inputlilD] * kltvec[k]UI;
sumli]ik] = sumliliki + feat;

A *write to a file *e
for (i=O; i < num..patterns; i++)
I if (i iA 0) fprintf(outfile, "n)
for (j=O; j < nurn.eigenvec; j++)

B-23

fprintf(outfile, 11%f lsum[illj]);

fIoeifl)
fclose(infile2);

fclose(outfile);

/ * end main *

Program: magphase-c

Description: Computes magnitude and phase
of the lower 3 harmonics

#include <stdio.h>
#include czmath.h>
#define ARC(a) (float)atan((double)(a))
#define PI 3.141592654
mnain (argc, argv)
imt argc:
char *argvo:

int ij. k, junk, num-patterns, num-features;
float mag[500] [101[10], phase[5001110] [10]. data[500] [10] rio];
float temp.templ .temp2;
FILE *file, *phase-file, *mag-jlle, *phase-.only-file. *mag..phase-file, *mag-only..file:,

if (argc i4 2)

fprintf(stderr, 11%s: usage: %a <iuf le> <outf ile>\n", argv[0], argv[0]);
exit(1);

if ((file = fopen(argv[l], "lr")) == NULL)

printf(stderr, "Couldn't open file list %s\n", argv[1]):.
exit(0):

num..patterns =400;

numnieatures =49:

B-24

for (k=1; k < num..patterxi; k++)
(fmcauf(file,"Xd", &junk);

for (0=1; i <7; i++)
for (j1l i:j 7; j++)

for (k=l; k< num..patterns; k++)

for (i=l; i<3; i++)
for (j1l; j :ý 7; j++)

mnag[k)[l][j = 0.0;
phase~k]IillUl = 0.0;

for (k=l: k< num..patterns: k++)
f
for (i=1:. i<3; i++)

for (j1l; j :5 7; j++)

magik] [i] Ii = sqrt(data[k] [i] U]*data[k~li] U] + data[k] [8-i] U1*datalkl [8-i]jij);

i=4:,
for (j1;: j:53: j++)

mag[kJ[ib] b = sqrt(data~k] [ii W*data[k] [i]j~j + data[k] Ii] [8-j]*data[k] 11118-il);

for (k=l; k< num..patterns; k++)
f
for (1= 1; i<3; i++)

for (j1;, j :5 7; j++)

if (datalk]illfi > 0 && data[k][8-iI]i] Ž0)
phase[k] [] i]U = (180/PI)*ARC((double)datalk] [8-i] Uu/dtalkl]iLi);

else if (data[k][i][j] > 0 && datafk][8-i]Li] < 0)
phaselk] [i]UL] = 360 + (180/P1)*ARC((double)data~k)f8-i]Ul]/dtalk] [i]UL]);

else if (data[k][i]Ul] < 0 && data[k][8-i]Ul >0)
phaselk][i]Li = 180 + (180/PI)*ARC((double)datafk] [8-i]li]/dlsta[kl~]i]b);

else if (data[k][i]fi] < 0 && datalk][8-i]Ul] <0o,
phase~k] [i]l] = 180 + (180/PI)*ARC((double)data~k]f8-i]1j]/dta[k] [Ji]b);

B-25

i=4;
for (j=l; j:53; j++)

if (data~kfli)]W > 0 && datalkl[iI(8-jI >0)
phase~kl(ijl~j = (180/P)*ARC((double)datalk1[i1[8-.i/datalk1 [11W);,

else if (datalk]lilUl > 0 && datalk][i][8-j] < 0)
phaselkjii]Li = 360 + (180/Pi)*ARC((double)datajkj ji] [8-j1/datalk] [i][j]);

else if (datalk]iiU] < 0 && datalk][i][8-ji >0)
phase[kjji] U] = 180 + (180/P¶)sARC((double)data[k][i] [8-j]/datafkJfi] U]);

else if (datalkjji]bi < 0 && datafk][ij j8-j] < 0)
phasetk] [iiU] = 180 + (180/PI)*ARC((double)datalk] [i][8-j]/data[kI Ii] U]);

/* print to a file to verify it works *

phase-file = fopen("phase", IVII

k=l1;

for (0=1; i<3; i++)
for (j=I: j !5 7; j++)

fprintf(phaseiie, '%fn", phaselkllilb]);

i=4;
for (j=l; i <53; j++)
fprintf(phase-file, "%Zf\n", phase[kJ [ijji);

mag-file = fopen("magnitude" ,v");
k1l;

for (,=1; i<3; i++)
for (j=I: j :5 7; j++)

i=4;
for (j=l; j <53; j++)
fprintf(mag..file, "%f W', mag[kJ [ilUl):.

/* print a new feature set *

/* print mag and phase */

mag..phase..file = fopen("iag-phase..ftro'"w");.

B-26

for (k1:. k< num..patterus; k++)

I
for 0=1; i<3; i++)

for (j=l;j i 7; j++)
fprintf(zuag-.phase..fie, "%f ,ma~g~k][ifl]);

for (j=l: j <53; j++)
fpuizitf(mag-phase-fle, "U~ "magjk][i]jU]);

j=4; I*print dc term */
fprintf(mag..phase-file, "%f ,data[k] hij I);

for (i=l; i<3; i++)
for (j=1; j :5 7; j++)

fprintf(iuag-phase-ile, "%:f" phasc.[k] [i] []):

i=4;
for (j1:- j :53; j++)
fprintf(mag-phase-file. "%f ,phase[k][i][j]):
fprintf(mag-phase-ile, 'l\n")

/* print phase only *

phase-only..file = fopen("phase-ftra' ,"w");

for (k1:; k< num-patterns; k++)

f
for (i=l: i<3; i++)

for (j=1: j :5 7, j++)
fprintf(phase-only-file, "%/f "phase~k] [iilbi):

i=4;

for (j=l; j <53; j++)
fprintf(phase-only-iile, "%:f ",phase[k] Ii] Li);
fprintf(phase..onlyjie, l'\nl);

/* print mag only *

mag..onlyifile = fopen("mag-ftrs ","v",);

for (k1;, k< nuni-patterns; k++)
f
for (i1l; i<3; i++)

for (j1;- j <5 7; j++)
fprintf(magjirnly-file. "%f 1, mag[k][iflj]):,

B-27

i=4;
for (j=1; j _<3; j++)
fprintf(mag.unly-file, "%f ", mag[k][iJ[jJ);

j=4; /*print dc term */
fprintf(magnonly.file, "X% ", data[k][i][j]);

}/** end main

Program: getfom.c

Description: Builds a feature set from
selected features of the 441 calculated
from the original feature set.

#include<stdio.h>

main(argc, argv)
int argc:
char *argvo:
{

int i, j. done = 0, num-patterns, num-features~junk.dimensions;
float valdata[800][800];
char filename[80], temp[20]1
FILE *file, *outfile;

static int classo =

{0.0, 0. 0, 0, 0, 0, 0, 0, 0, 0, 0. 0, 0. 0, 0. 0, 0. 0, 0, 0,
0. 0. 0, 0, , 00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0. 0, 0, 0, 0, 0. 0, 0. 0, 0, 0. 0, 0, 0, ',, 0, 0, 0. 0, 0.
0. 0, 0, 0, 0, 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0. 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0,
1, 1. 1, 1, 1, 1, 1, 1, 1, 1, 1. 1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. 2, 2,
2, 2, 2, 2, 2, 2, 2, 2. 2, 2, 2. 2, 2, 2, 2, 2, 2. 2. 2, 2.
2, 2, 2, 2, 2, 2, 2, 2. 2, 2, 2, 2, 2. 2, 2, 2, 2. 2. 2, 2,

B-28

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. 2. 2. 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. 2, 2, 2, 2. 2. 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3,3, 3, 3, 3, 3, 3. 3, 3,3, 3, 3,
3, 3. 3, 3, 3, 3, 3, 3. 3, 3, 3, 3, 3. 3, 3, 3. 3,3. 3, 3,
3, 3, 3, 3, 3, 3, 3, 3. 3, 3, 3, 3, 3. 3, 3, 3. 3, 3, 3, 3,
3. 3. 3. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,3, 3.33, 3,3,3. 3,3,3,3, 3, 3, 3, 3,3, 3, 3, 3. 3, 3, 3, 3. 3, 3, 3,3.3,3,3,3,3,3,3,3,3,3,3,3.3,3,3,3,3,3,3);

/* added an extra zero in classfl to account for the for loop below
beginning with i=1 */

static int selected-features U =
{ 221, 222, 220, 199, 243, 201, 241,
200, 242, 177. 261,178, 262,
179, 263, 180, 264, 181, 265,
198, 240, 202. 244, 219, 223,
155, 281, 156, 282, 157, 283,
158, 284, 159, 285, 160, 286,
161,287, 176. 260, 197, 239,
182. 266, 203. 245, 218, 224 };

/* static int selected.features 9 -
{ 245 1; */

if (argc 0 6)
{

fprintf(stderr, "%s: usage: %s <infile> <outfile>\n". argv[O], argv[0]);
exit(1);

if ((file = fopen(argv[1], "r")) == NULL)

{
printf(stderr, "Couldn't open file list Ws\n". argv[1]);
exit(0);

I
if ((outfile = fopen(argv[2], "w")) == NULL)

{
printf(stderr, "Couldn't open output file Ws\n", argv[2]);
exit(0);
}

num-patterns = atoi(argv[3]);
num-features = atoi(argv[4]);
dimensions = atoi(argv[5]);

for (i=1; i < numrpatterns; i++)

for (j=O; j < numrfeatures; j++)
if (j==0) fscanf(file."%d", &junk):

else
fscanf(file, "%f",,&data[i][U]);

B-29

for(i=1; i< num-.patterns; i++)

fprintf(outflile,"%d ",claasliJ);
for(j=0; j< dimensionsj++)

fprintf(outfile, '%Xf ",data[i] [selected-featuresblD);

fclose(file);
fclose(outfile);

Program: addc~lassid.c

Description: Adds dlassid's to the
feature set for use in LNKnet

#include~stdio.h>

main(argc. argv)
hit argc;
char *argva;

int i. j=0, done = 0, num..patterns, mnumleatures;
float val.data[800] [8001;
char filenamel8O], temp[20];

FILE *file, *outfile;

static imt classo =

t0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0. 0. 0, 0, 0, 0, 0. 0, 0,0, 0, 0, 0, 0, 0. 0, 0, 0,
0.o lolo lo 0,0,,,00 0,0,0, 0, 0, 0,0, 0,0, 0,0,0, 0,
0, 0, 0,0. 0,0, 0,0,0.0,0, 0, 0,0, 0, 0,0. 0. 0,0,
0. 0, 0. 0.0, 0, 0,0, 0,0, 0.0, 0,0, 0, 0,0, 0. 0, 0,

B-30

2, 2. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ?
2. 2, 2, 2, 2, 2, 2, 2, 2. 2, 2, 2, 2, 2, 2, 2, 2.2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,. 2, 2,2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3. 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 33, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3,3,3,3,3,3,3,3,33,3, 3, 3,3,3.33, 3,

3, 3. 3, 3, 3, 3, 3, 3,3,3,3,3,3,3,3,33.3,3, 3,3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3. 3, 3,3,.3, 3, 3, 3, 3,3,3, 3,3, 3,3, 3, 3,3, 3,3 }:

if (argc 4 5)
{

fprintf(stderr, "%a: usage: %a <t iie> <outfile>\n", argv[O], argv[OJ);
exit(l);

}

if ((file = fopen(argv[1], "r")) == NULL)

I
printf(stderr, "Couldn't open file list %s\n", argv[1]);
exit(O);
}
if ((outfile = fopen(argv[2], "v")) == NULL)

f
printf(stderr, "Couldn't open output tile %s\n", angvJ21);
exit(O):
}

num.patterns = atoi(argv[3]);
num-features = atoi(argv[4]);

for (isO; i < num.patterns; i++)
for (j=O: j < num.features; j++)

fscanf(file, "%f",&data[i] Dj);

for (i=O; i < uum.patterns; i++)

if (i $ 0) fprintf (outfile, "\n");

fprintf (outfile, "Xd ", class[i]);
for (j=O; j < num-features; ji++)

fprintf (outfile, "%f ", datali][U]);

i
fclose(file);
fclose(outfile);

B-31

Program: removed assid.c

Description: Removes dlassid's from the

feature set.

#include<stdio.h>

main(argc, argv)
int argc;
char *argvfl;

int i. num..patterzis. num-features. size;

char filename[801. *buf, *ptr;
FILE *file, *outfile:,

if (argc 9 5)

fprintf(stderr. 11%s: usage: %a <inf ile> <outfile>\n11, argv[OJ, argv[OJ);

exit(1);

num..patterns =atoi(argv[3]);

num-features =atoi(argv[41);

size = 15 * numleatures + 2;

if ((buf = (char *) malloc(size)) ==NULL)

fprintf(stderr, "Couldn't allocate %d bytes of storage~n",size):

exit(O);,

if ((file = fopen(argv~l], 'Y')) == NULL)

fprintf(stderr, "Couldn 't open file list Wsit", argv[l]);
exit(O);

I

fprintf(stderr, "Couldn't open output file Wsn", argv[21);
exit(O);

ptr =buf+2;
for (i0O; i < num..patterns; i++)

B-32

if (fgets(buf, size, file)=NULL)

fprintf(stderr, "PANIC! Read error or EOF *ncountered\nl');
break;

fputs(ptr, outfile);

fi-ee(buf);
Mcose(file);
fclose(outfile);

Program: rand4c.c

Description: Randomizes 4 classes of data, which
is in a file format ready for LNKnet, into
training and testing sets. An equal number of
data samples are place in each set.

#indude<stdio.h>
#include<sys/types.h>
#include<sys/time.h>

main(argc, argv)
jut argc;
char *argva;

i

hit j~x~ik,idx[100] [100J,temp, num..patterns, numlfeatures;
float data[500J [500];
FILE *file, *outfllel, *outflle2, *outflle3;

if (argc 0 7)

fprintf(stderr, 11%9: usage: %a <inf ile> <outfile~n, argv[O], argv[0J);
exit(1);

if ((file = fopen(argv[l], 11r")) == NULL)

printf(stderr, "Couldn't open file list %u\n", argv[lJ);
exit(0);

B-33

if ((outfilel = fopen(argv[2J, I'w)) ==NULL)
I
printf(stderr, "Couldn't open output file Wsn", argv[2]);
excit(O);

if ((outfile2 = fopen(argv[3J, I'v)) == NULL)
f
printf(stdert, "Couldn't open output file 7Wun", argv[2]);
excit(O);

if ((outfile3 = fopen(argv[6J, "w")) == NULL)

f
printf(stderr, "Couldn't open output file Wan". argv[6]);
exit(O);

/eread in the datafile*/

num-patterns =atoi(argv[41);
num-features =atoi(argv[5J);

for (i0O: i < num-patterns; i++)
for (j=O; j < nunL-features+1; j++)

if (j==O)
fscanf(file, 11%f", &datali]V]);

else
fscanf(file, ,%:V,&datali]DU]):

/*randomize a set of numbers for equal numbers of training and testing *9

for (i0O; i < 4; i++)

I
orandom((long) time(NULL));
for (j=O: j<100; i++)

idxlillj] = j

for Uj=0j<lOO~j++)

x--razidomo%99;
temp, = idx[iJ[x];
idx[i][xJ idx[i]U];
idx[i]U] =temp;

B-34

}
I.. print values to the screen for grins *./
/, for (i1; i<4; i++)

for (-O; j<1OO; j++) */

/** write the data to train and test files **/
for (i=O; i<4; i++) /* separate each cdans /
{

if (i == 0) /* class one*/
{

for (j=O; j < 100; j++) /* number of patterns in class one *
{

if (j_49) /, split 50-50 into test and train
{ /* writing to train file *

if (j$O) fprintf (outfilel, "\A");
for (k=O; k < num-features+1; k++)

{
if (k == 0) fprintf(outfilel, "%d ",

(int) data[idx[i].ji]J[kJ);

else
fprintf(outfilel, "%:f ", datajidx[i]U]][k]);

I
}

if (jŽ>50) /* writing to test file *
{

if 69650) fprintf(outfile2, "\n");

for (k=O; k < numnfeatures+l; k++)

{
if (k == 0) {fprintf(outfile2, "%d ',

(int) datalidx[i]jlj][k]);
fprintf(outfile3,"X{d\n",(idxi][j]-I));I /** print list to a file **/

else
fprintf(outfile2, "Zf ". data[idx[ijU]jJ[k);

I
I

I
I

else
if (i == 1) /* same as above, but for the next cdas s/

{
for (j=0; j < 100; j++)
{

if (j549)
{
fprintf (outfilel, "\n");

for (k=O; k < numleatures+l; k++)

{

B-35

A* must account for where the second class is located in the file *
if (k == 0) fprintf(outfilel, 11d 11,

(int) data[100+idxji][.j]Jk]);

elsefprintf(outfilel, 'I.f 1,dataj10O+idxliji])Ikl);

if U>50)

fpriatf(outfile2, 'An");
for (kO; kt < nuxneatures+1; k++)

if (k == 0) { fprintf(outfile2, "%d so,
(int) data[1I00+idxiJ DJJ[kJ);
fprintf(outfile3, "%A~n", (idxliJ]jJ+10i));}

else
fprintf(outfile2, 'If ". data[IOO+idxfilU)I Ik]);

else
if (i ==2) A* same as above, but for the next class s

for (j=o; j < 100; j++)

if Q549)

fprintf (outfilel, "\al)l
for (k=0; k < num-.features+l; k++)
f

/* must account for where the third class is located in the file *
if (k == 0) fprintf(outfilel, "%d "

(int) dataI200+idxlj!jjI[k]);
else

fprintf(outfilel, --%f ", data[200+idxfiJU]Jfkj);

if (j>50)

fprintf(outfile2, "WI");
for (k=0; k < numleatures+l: k++)
I

if (k == 0) 1 fprintf(outfile2, "%d "

(int) data! 200+idx[iJjjJ][kJ);
fprintf(outfile3, "Witn", (idx[iJ]jJ+201));)
else

fprintf(outfile2, "7f ", data[200+idxjilUlJjkj);

B-36

else
if (i ==3) ft same as above, but for the next class *

for (j0o; j < 100; j++)

if Q549)

fprintf (outifilel, "\W'9;
for (k0O; k < numlfeatures+l; k++)
f

ft must account for where the fourth class is located in the file f
if (k == 0) fprintf(outfilel. 1%d

(hit) data[300+idx[i]U]JlkI);
else

fpriatf(outfilel. 11%f ". dataI300+idxl][fi]U [k]);

if (j>50)

fprintf(outfile2, "W'");
for (k0O; k < nu- .fatres+1: k++)

if (kc == 0) { fprintf(outfile2, "%d "

(hit) dataf 300+idxli]~jJJk]);
fprintf(outfile3, "XdAn", (idxli]Li]+301));}

else
fpriatf(outfile2, 1It%" datal300+idxfiIUJI[kj);

/* /end for loope'/
/*ftend maiw./

Program: sort-best-feature.c

Description: This program is part

B-37

of the script file, for add-on testing.
It finds the best feature during addon
testing.

#include <stdio.h>

main()

t

iut i,count=O,feature number[5OO];
Bloat test-error[500];
FILE *infile. *outflle;

if ((jidile = fopen("test -features" "r")) ==NULL)

printf(stderr. "Couldn't open file list %9\a");
exit(O):

I
if ((outfile = fopen("feature", Wa')) == NULL)
I
printf(stderr. "Couldn't open output file Wsn"),
exit(O);,

for(i=O;i<500;i++)
test -errorti] =I OO.00;

i1l;
while (fscanf(infile, "%d %U",&feature-numberli],&-test..errorli]) i4 EOF){

count+ +:

I
1*fOr(i=1;i<5 8:i++){
fscanf(infile,. "%d", &feature-iumberfij);
Iscanf(in~flle. "%f",&test..errorfiJ,); 'y

/* count = 8; e

sort

piksr2(count,test..error,feature..nuxnber);

fprintf(outfile,"Wdn", feature..numberll]);

B-38

Program: geterror.c

Description: finds which patterns
were misclassified. This program is

is part of the script file getm~iss.

#include <stdio.h>
#include <string.h>
main()

f
int j.how..many;
float train-.err [I001,test -err[I00],train..rmserr[IOO] ,test .rmserr[10O];
FILE *iufile, *outfile;

if ((imile = fopen("1error", fir")) == NULL)

f
printf(stderr, "Couldn't open file list Wsn", "miss")
exit(O);

if ((outfile = fopen("lerror..report", "w")) == NULL)

priatf(stderr. "Couldn't open file list WWIn. "1test.test")
exit(O);

ficanf(inflle,"Xd', &how-many);

/* get the error *

for (j=l; j:5how-many/4ý j++)

fscanf(inflle, "%~f %f f Xf f" ,&train-errU], &train-rmserrUjJ, &test-errUj], &test..rmserrbiI);

piksr2(how..many/4,test..err,train..err);
piksr2(how..many/4, test..rmserr,trainz.mserr);

fprintf(outfile, "X%2.2f %2.2f %2. 2f %.2. 2f", test..eff ll~train-errtlJ, test..rmserr[1], trarn..rmserr[li);

/*end main*/

B-39

Bibliography

1. Bertille, J.M. and A.E. Yacoubi. "Global Cursive Postal Code Recognition Using
Hidden Markov Models." Proceedings from the First European Conference dedicated
to Postal Technologies1. 129-137. 1993.

2. Bush, Larry F. The Design of an Optimum Alphanumeric Symbol Set for Cockpit
Displays. MS thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1977.

3. Cohen, E. et al. "Understanding Spatially Structured Handwritten Text." First In-
ternational Conference on Document Analysis and Recognition2. 984-992. 1991.

4. Davenport, Wilbur B. Probability and Random Processes. New York, NY: McGraw-
Hill, 1987.

5. Duda and Hart. Pattern Recognition and Scene Classification. New York, NY:
McGraw-Hill, Inc., 1971.

6. Fukunaga, Keinosuke. Introduction to Statistical Pattern Recognition. San Diego,
CA: Academic Press, Inc., 1990.

7. Garcia, G.L. "The State of the Art of Handwriting Recognition for Automated Mail
Processing." Proceedings from the First European Conference dedicated to Postal Tech-
nologiesi. 437-446. 1993.

8. Gaskill, Jack D. Linear Systems, Fourier Transforms, and Optics. New York, NY:
John Wiley and Sons, 1978.

9. Gilloux, Michel and Manuel Leroux. "Recognition of Cursive Script Amounts on
Postal Cheques." Proceedings from the First European Conference dedicated to Postal
Technologies2. 705-712. 1993.

10. Ho, T.K. et al. "Word Recognition With Multi-Level Contextual Knowledge." First
International Conference on Document Analysis and Recognition2. 905-915. 1991.

11. Kabrisky, Matthew. A Proposed Model for Visual Information Processing in the Hu-
man Brain. Chicago, IL: University of Illinois Press, 1964.

12. Kukolich, Linda, "LNKnet," 1992.

13. Moreau, J.V. et al. "A Postal Check Reading System." First International Conference
on Document Analysis and Recognition2. 758-764. 1991.

14. New Mexico, University of, "Visual Programming System and Software Development
Environment for Data Processing and Visualization (Khoros)," 1991.

15. of Excellence for Document Analysis, Center and Recognition, "USPS Office of Ad-
vanced Technology Database of Handwritten Cities, States, ZIP Codes, Digits, and
Alphabetic Characters," 1992.

16. O'Hair, Mark A. A Whole Word and Number Reading Machine Based
on Low Frequency Fourier Complex and Amplitude Spectrums. MS thesis,
AFIT/GEO/ENG/84D, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1984.

BIB-1

17. O'Hair, Mark A. A Whole Word and Number reading Machine Based on 2-
Dimensional Low Frequency Fourier Transforms. PhD dissertation, School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, De-
cember 1990.

18. Parsons, Thomas W. Voice and Speech Processing. New York, NY: McGraw-Hill,
Inc., 1987.

19. Pearson, E.S. and H.O. Hartley. Biometrika Tables for Statisticians. Cambridge,
England: Cambridge University Press, 1966.

20. Pintsov, L.A. "Handwritten Character Recognition Some Observations Concerning
Principles and Modus Operandi." Proceedings from the First European Conference
dedicated to Postal Technologies1. 26-34. 1993.

21. Powalka, R.K., et al. "A Toolbox for Recognition of Varied Handwritten Script."
Proceedings from the First European Conference dedicated to Postal Technologies1.
140-147. 1993.

22. Radoy, Charles. Pattern Recognition by Fourier Series Transformations. MS thesis,
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, August 1968.

23. Rogers, Steven K. and others. An Introduction to Biological and Artificial Neural
Networks. Bellingham, WA: SPIE Optical Engineering Press, 1991.

24. S., Tsujimoto and Asanda H. "Resolving Ambiguity in Segmenting Touching Charac-
ters." First International Conference on Document Analysis and Recognition2. 701-
709. 1991.

25. S., Zeki. "The Visual Image in Mind and Brain," Scientific American, 267:69-76
(Sept 1992).

26. Simon, J.C. "On The Robustness of Recognition of Degraded Line Images." Proceed-
ings from the First European Conference dedicated to Postal Technologies 2. 695-696.
1993.

27. Srihari, S.N., et al. "Interpretation of Handwritten Addresses in US Mail Stream."
Proceedings from the First European Conference dedicated to Postal Technologies1.
421-428. 1993.

28. Suarez, P.F. Face Recognition with the Karhunen-Loeve Transform. MS thesis,
AFIT/GE/ENG/91D, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

29. Tallman, Oliver H. The Classification of Visual Images by Spatial Filtering. PhD
dissertation, Air Force Institute of Technology, 1969.

30. Tou, Julius T. and Rafael C. Gonzalez. Pattern Recognition Principles. Reading,
MA: Addison-Wesley Publishing, 1974.

BIB-2

Vita

Captain Gary F. Shartle was born on 28 March 1965 in Fullerton, California and
graduated from Cumberland Valley High School in Mechanicsburg, PA in June, 1983.
Upon graduating from Grove City College in 1987 with a Bachelor of Science in Electrical
Engineering, he entered the Air Force, and was an operations management officer assigned
to the 69th Bombardment Squadron at Loring AFB in Maine. In 1991, to complete the
operational tour, he was assigned to the 3rd Tactical Fighter Wing at Clark AFB in the
Phillippinea;, serving as a command and control officer. Due to the fiery explosion of Mt.
Pinatubo, he was transferred to Wright-Patterson AFB. In May 1992, Captain Shartle
entered the Air Force Institute of Technology at Wright-Patterson AFB, Ohio to pursue a
Master of Science degree in Electro-Optics.

Permanent address: 4184 Tonawanda Trail
Beavercreek, OH 45430

VITA-1

Form ApprovedREPORT DOCUMENTATION PAGE OM o 0704-0188

Putfi~c eoori.rrg uraem or,r ms ciecton)f r'a ý .sfV! f "' i elq -,-u De -e ~Wcre rr~uar'g tre tine~ 'r' e dr rr , ~ear'' .sbq d~ata ~wu~f
gather•nJ g r ra malTn lnrg thl ata needed. ano o i no C r re,'el^-• •r' •..t'.•, n rr ' ' Cr' - - eno ::3 ments .arnarr t•s • D r' ist r'rjte l ir)t n hrer ispe ot !"'s
collection 3,, ,r'rrrr tror' . a n(:an sugges ri s * or *ea~ur' o o-- i 't -"a~ .i. Der. :e(.!0 C ,dTe " ' r'rdt Cr' Ooe'. r, -rýR -o 'rts, 2 S ,effersurr

D4 gC .. S,~.e i, -r rgon A221)241302 3rd* '' r' p'er(cr. Redoctor' C',c r' IC 01C28$) ',asr'rnot-~ &C 20S03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

HANDWRITTEN WORD RECOGNITION
BASED ON
FOURIER COEFFICIENTS

6. AUTHOR(S)

Gary F. Shartle

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 R EORT NUMBER

AFIT/GEO/ENG/93D-04

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Major Mark O'Hair
WL/AAR
WPAFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

A machine which can read unconstrained words remains an unsolved problem. For example, automatic entry of
handwritten documents into a computer is yet to be accomplished. Most systems attempt to segment letters of
a word and read words one character at a time. Segmenting a handwritten word is very difficult and often, the
confidence of the results is low. Another method which avoids segmentation altogether is to treat each word as a
whole. This research investigates the use of Fourier Transform coefficients, computed from the whole word, for the
recognition of handwritten words. To test this concept, the particular pattern recognition problem studied consisted
of classifying four handwritten words, 'Buffalo', 'Vegas', 'Washington', 'City.' Several feature subsets of the Fourier
coefficients are examined. The best recognition performance of 76.2% was achieved when the Karhunen-Loeve
transform was computed on the Fourier coefficients.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Pattern Recognition, Recognition, Whole Word Recognition 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Pý-ýr,o•Pdl by ANS. Stcl Z39-18

'2

